Kimberlites as Geochemical Probes of Earth’s Mantle

Elements ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 387-392 ◽  
Author(s):  
D. Graham Pearson ◽  
Jon Woodhead ◽  
Philip E. Janney

Kimberlites are ultrabasic, Si-undersaturated, low Al, low Na rocks rich in CO2 and H2O. The distinctive geochemical character of kimberlite is strongly influenced by the nature of the local underlying lithospheric mantle. Despite this, incompatible trace element ratios and radiogenic isotope characteristics of kimberlites, filtered for the effects of crustal contamination and alteration, closely resemble rocks derived from the deeper, more primitive, convecting mantle. This suggests that the ultimate magma source is sub-lithospheric. Although the composition of primitive kimberlite melt remains unresolved, kimberlites are likely derived from the convecting mantle, with possible source regions ranging from just below the lithosphere, through the transition zone, to the core–mantle boundary.

2021 ◽  
Author(s):  
Arianna Secchiari ◽  
Alessandra Montanini ◽  
Dominique Cluzel ◽  
Elisa Ferrari

<p>The New Caledonia ophiolite hosts one of most complete sections of a nascent arc, representing an excellent natural laboratory for investigating the origin and the evolution of subduction systems. The sequence, originated during the onset of the Eocene subduction [1, 2], is composed of ultra-depleted forearc harzburgites [3] overlain by a dunite-dominated transition zone (500m thick), in turn overtopped by mafic-ultramafic cumulate lenses. The ultramafic rocks of the transition zone (mainly dunites and wehrlites) most likely resulted from melt-peridotite reactions involving primitive arc tholeiites and boninitic magmas [2]. By contrast, dunite-pyroxenite and gabbronorite cumulates derive from H<sub>2</sub>O-poor depleted melts transitional between boninites and arc-tholeiites [2, 4].</p><p>In this contribution, we report the first occurrence of amphibole-bearing ultramafic lithologies in the New Caledonia arc sequence. Our study deals with a petrological and geochemical characterisation of a 2.5km x 5km composite, roughly snowball-shaped, intrusive body, consisting of pyroxenite, dunite, wehrlite, hornblendite and associated mafic-ultramafic, locally sheared, dikes from the Plum area (Massif du Sud).  The pyroxenite component, which forms the core of the intrusion, consists of coarse-grained websterites, mainly composed of weakly oriented orthopyroxene (~ 30-75 vol.%) and clinopyroxene (~ 20-40 vol.%), with variable amounts of edenitic amphibole (~ 2-30 vol.%). The amphibole generally occurs as poikilitic crystals or develops as coronas on pyroxenes. Highly calcic plagioclase (An= 83-96 mol %) is scarce in the pyroxenite body (~ 2 vol. %), but more abundant in the associated dikes (~ 10-50 vol.%). Clinopyroxene shows variable Mg# (0.82-0.92) and low Al<sub>2</sub>O<sub>3 </sub>(0.99-2.00 wt%). Likewise, amphibole yields high Mg# (0.712-0.865). Estimated equilibrium temperatures based on conventional pyroxene thermometry range between 870-970°C, whereas amphibole-plagioclase pairs provide slightly lower values (800-910 °C).</p><p>Whole rocks have moderately high Mg# (71-82) and REE concentrations one to five times chondritic values. The websterites of the main body show LREE-depleted (La<sub>N</sub>/Nd<sub>N</sub> = 0.5-0.8), weakly concave downward patterns, with flat HREE segments (Lu<sub>N</sub>/Tm<sub>N</sub> = 1.1-1.3). The mafic-ultramafic dikes display similar patterns, bearing depleted to flat LREE segments (La<sub>N</sub>/Nd<sub>N</sub> = 0.6-1) and positive Eu anomalies. For all the investigated lithologies, extended trace element diagrams indicate enrichments for FME (i.e. Rb, Ba, U) and Th, coupled to Zr-Hf depletion. Strong Sr positive spikes are only observed for the crosscutting dikes, while the pyroxenite body yields Sr negative anomalies.</p><p>Geochemical modelling shows that the putative liquids in equilibrium with the websterites have intermediate Mg# (57–63) and incompatible trace element patterns sharing remarkable similarities with the New Caledonia CE-boninites [5]. However, they significantly differ from the equilibrium melts reported for the other intrusive rocks of the sequence [1, 4], suggesting greater compositional variability for the liquids ascending into the Moho transition zone and lower crust. Our results support the notion that petrological and geochemical heterogeneity of magmatic products may be distinctive features of subduction infancy.</p><p> </p><p>References</p><p>[1] Marchesi et al., Chem. Geol., 2009, 266, 171-186.</p><p>[2] Pirard et al., J. Petrol., 2013, 54, 1759–1792.</p><p>[3] Secchiari et al., Geosc. Front., 2020, 11(1), 37–55.</p><p>[4] Secchiari et al., Contrib. Mineral. Petrol., 2018, 173(8), 66.</p><p>[5] Cluzel et al., Lithos, 2016, 260, 429–442.</p>


2005 ◽  
Vol 42 (9) ◽  
pp. 1571-1587 ◽  
Author(s):  
Michael J Dorais ◽  
Matthew Harper ◽  
Susan Larson ◽  
Hendro Nugroho ◽  
Paul Richardson ◽  
...  

New England and Maritime Canada host two major suites of Mesozoic diabase dykes. The oldest is the Coastal New England dykes that were emplaced between 225 and 230 Ma. These rocks are dominantly alkaline with trace element and isotopic compositions indicative of a high-238U/204Pb mantle (HIMU) source. The oldest of the ~200 Ma Mesozoic rift magmas is represented by the Talcott basalt of the Hartford basin and its feeder dykes. External to the basin is the compositionally equivalent Higganum dyke. The extension of the Higganum, the Onway dyke in New Hampshire, is identical in major and trace element and isotopic compositions indicating that the dyke system represented a feeder to flows of flood basalt proportions. The Talcott system rocks have some trace element similarities with arc basalts and have been interpreted as representing melts of a subduction zone modified mantle beneath the Laurentian- Gondwanan suture. Incompatible trace element ratios and Ba, Th, and U values are, however, unlike arc basalts and are more indicative of crustal contamination of the primary magma. The coastal New England magmas have oceanic island basalt signatures that are generally thought to represent plume-tail magmatism, which is antithetic to a plume-head origin for the younger eastern North America magmas. However, coastal New England rocks have the same trace element signatures as the alkaline rocks of the Loihi seamount, which represent the pre-shield stage to the voluminous tholeiitic magmatism in Hawaii.


1993 ◽  
Vol 30 (6) ◽  
pp. 1123-1140 ◽  
Author(s):  
P. C. Lightfoot ◽  
H. de Souza ◽  
W. Doherty

Major and trace element data are presented for 2.2 Ga Proterozoic diabase sills from across the Nipissing magmatic province of Ontario. In situ differentiation of the magma coupled with assimilation of Huronian Supergroup roof sediments is responsible for the variation in composition between quartz diabase and granophyric diabase seen within many of the differentiated intrusions. Uniform trace element and isotope ratio signatures, such as La/Sm (2.8 – 3.7) and εNdCHUR (−2.7 to −5.9) characterize chilled margins and undifferentiated quartz diabases. These chemical signatures suggest the existence of a single magma source that was parental to intrusions throughout the magmatic province; this magma has higher La/Sm and lower Ti/Y than primitive mantle and is displaced towards the composition of shales. Most chilled diabases and quartz diabases have a similar Mg# (0.64 and 0.60) and Ni content (98 and 127 ppm), and it is argued that the magma differentiated at depth and was emplaced as a uniform low-Mg magma. The Wanapitei intrusion and Kukagami Lake sill are an exception in that although the quartz diabase has La/Sm similar to the Nipissing magma type, which suggests that they came from the same source, the Mg# (0.68–0.71) and Ni content (130–141 ppm) are higher, which may suggest that they are either slightly more primitive examples of the normal Nipissing magma or that cumulus hypersthene has been resorbed. The light rare earth element enriched signature of the Nipissing magmas was perhaps introduced from the continental crust as the magma migrated from the mantle to the surface, but a remarkably constant and large amount (>20%) of crustal contamination would be required. An addition of 1 –3% shale to the source of a transitional mid-ocean ridge basalt type magma can broadly reproduce the compositional features of the Nipissing magma type. The source characteristics were perhaps imparted during subduction accompanying the terminal Kenoran orogeny.


2020 ◽  
Vol 123 (4) ◽  
pp. 597-614
Author(s):  
F. Humbert ◽  
M.A. Elburg ◽  
A. Agangi ◽  
G. Belyanin ◽  
J. Akoh ◽  
...  

Abstract Numerous Mesoproterozoic alkaline intrusions belonging to the Pilanesberg Alkaline Province are present within the Transvaal sub-basin of the Kaapvaal Craton. The Pilanesberg Complex is the best-known example; it represents one of the world’s largest alkaline complexes, and is associated with a northwest-southeast trending dyke swarm that extends from Botswana to the southwest of Johannesburg. This paper documents the results of a petrological and geochemical study of a thin mafic sill (here referred to as an alkaline igneous body, AIB), which intrudes the ca. 2 200 Ma Silverton Formation close to the southernmost part of the Pilanesberg dyke swarm. The AIB has only been observed in cores from a borehole drilled close to Carletonville. It is hypocrystalline, containing randomly oriented elongated skeletal kaersutite crystals and 6 to 8 mm varioles mainly composed of radially oriented acicular plagioclase. These two textures are related to undercooling, probably linked to the limited thickness (70 cm) of the AIB coupled with a probable shallow emplacement depth. Ar-Ar dating of the kaersutite gives an age of ca. 1 400 Ma, similar to the age of Pilanesberg Complex. However, the AIB is an alkaline basaltic andesite and is thus notably less differentiated than the Pilanesberg Complex and some of its associated dykes, such as the Maanhaarrand dyke, for which we provide whole-rock geochemical data. Literature data indicate that the Pilanesberg dyke swarm also contains mafic hypabyssal rocks suggesting a link between the dyke swarm and the AIB. The AIB is characterized by strongly negative εNd and εHf, that cannot be related to crustal contamination, as shown by positive Ti and P anomalies, and the absence of negative Nb-Ta anomalies in mantle-normalised trace element diagrams. The AIB magma is interpreted to have been derived from a long-lived enriched, probably lithospheric mantle reservoir. The AIB thus provides important information on the magma source of the Pilanesberg Alkaline Province.


2004 ◽  
Vol 141 (1) ◽  
pp. 81-98 ◽  
Author(s):  
PINAR ALICI ŞEN ◽  
ABİDİN TEMEL ◽  
ALAIN GOURGAUD

Extensive continental collision-related volcanism occurred in Turkey during Neogene–Quaternary times. In central Anatolia, calc-alkaline to alkaline volcanism began in the Middle–Late Miocene. Here we report trace elemental and isotopic data from Quaternary age samples from central and eastern Anatolia. Most mafic lavas from central Anatolia are basalt and basaltic andesite, with lesser amounts of basaltic trachyandesite and andesite. All magma types exhibit enrichment in LILE (Sr, Rb, Ba and Pb) relative to HFSE (Nb, Ta). Trace element patterns are characteristic of continental margin volcanism with high Ba/Nb and Th/Nb ratios. 87Sr/86Sr and 143Nd/144Nd isotopic ratios of central Anatolian lavas range between 0.704105–0.705619 and 0.512604–0.512849, respectively. The Quaternary alkaline volcanism of eastern Anatolia has been closely linked to the collision between the Arabian and Eurasian plates. Karacadaǧ and Tendürek volcanic rocks are represented by alkali basalts and basaltic trachyandesites, respectively. As expected from their alkaline nature, they contain high abundances of LIL elements, but Tendürek lavas also show depletion in Nb and Ta, indicating the role of crustal contamination in the evolution of these magmas. 87Sr/86Sr and 143Nd/144Nd ratios of the Karacadaǧ and Tendürek lavas range from 0.703512 to 0.704466; 0.512742 to 0.512883 and 0.705743 to 0.705889 and 0.512676, respectively. Petrogenetic modelling has been used to constrain source characteristics for the central and eastern Anatolian volcanic rocks. Trace element ratio plots and REE modelling indicate that the central Anatolian volcanism was generated from a lithospheric mantle source that recorded the previous subduction events between Afro-Arabian and Eurasian plates during Eocene to Miocene times. In contrast, The Karacadaǧ alkaline basaltic volcanism on the Arabian foreland is derived from an OIB-like mantle source with limited crustal contamination. Tendürek volcanism, located on thickened crust, north of the Bitlis thrust zone, derived from the lithospheric mantle via small degrees (1.5 %) of partial melting.


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-120
Author(s):  
Xiang Cui ◽  
Wenbin Zhu ◽  
F. Jourdan

Superchondritic Nb/Ta is rarely reported in terrestrial reservoirs and is usually attributed to carbonatite metasomatism or accessory rutile in the residue phase. Previously documented high Nb/Ta in rocks derived from subcontinental lithospheric mantle indicated a predominance of carbonatite metasomatism. This study evaluates Nb/Ta in conjunction with other trace elements of Neoproterozoic mafic dykes exposed in the eastern segment of the Jiangnan Orogen, where early subduction existed before the amalgamation of South China. These mafic dykes show mostly superchondritic Nb/Ta ratios from 19.6 to 24.5. Partial melting modelling suggested low-degree melting of rutile-bearing subcontinental lithospheric mantle for these mafic dykes. A literature review of Neoproterozoic mafic–intermediate rocks throughout the Jiangnan Orogen shows sporadically but coincidently superchondritic Nb/Ta near or beneath the Shuangxiwu arc, indicating rutile stability in the relict sub-arc mantle. Rutile in the lherzolite was formed sometime after Neoproterozoic subduction initiation in South China but contemporaneous with crustal thickening at c. 860 Ma. This study brings direct evidence to bear on the mechanism of rutile formation in the mantle wedge, as well as the link between crustal thickening and superchondritic Nb/Ta of mafic products derived from the metasomatized mantle.Supplementary material: Major and trace element compositions, photomicrographs of samples, and figures illustrating geochemistry, REE and incompatible trace element patterns and loss on ignition versus Nb/Ta and La/Yb are available at https://doi.org/10.6084/m9.figshare.c.5093535


2001 ◽  
Vol 138 (4) ◽  
pp. 371-386 ◽  
Author(s):  
ANDERS LINDH ◽  
ULF BERTIL ANDERSSON ◽  
THOMAS LUNDQVIST ◽  
STEFAN CLAESSON

Gabbro and leucogabbro are volumetrically important rocks in the Nordingrå rapakivi complex, East Central Sweden. Plagioclase, ortho- and clinopyroxenes, and olivine dominate the gabbro. Perthitic orthoclase and quartz are interstitial in relation to the major minerals. The present work is based on 232 major-element and a large number of trace element analyses together with 15 whole rock Sm–Nd isotope analyses of the Nordingrå gabbroic rocks. εNd(T) values are negative, −1.1 to −3.2; the most negative values come from the gabbro. Most rocks are enriched in iron, some extremely enriched; none represent primitive mantle melts. The range of Mg-numbers is the same in the gabbro and the leucogabbro. Plots of the Ni-content vs. the Mg-number are scattered, but there is a positive correlation between these two parameters. The primary mantle-normalized ratios between similar trace elements are normally strongly different from one. Values larger as well as smaller than one are found for the same ratio in different rocks. The rare earth elements are only weakly fractionated with small Eu anomalies, negative for the gabbros and positive for the leucogabbros. The primary magma of the Nordingrå gabbro-anorthosite is thought to have been derived from a mildly depleted mantle source. Variations in the degree of partial melting of a reasonably homogeneous enriched mantle do not explain the observed chemical evolution. Crystal differentiation can account for some geochemical features, especially the Fe-enrichment. Crustal contamination is required by other characteristics as, for example, the negative εNd(T) values and the irregular and sometimes high primary-mantle normalized incompatible trace-element ratios. Al-rich relic material from the formation of the rapakivi granite melt is another source of assimilation. Most probably contaminants are heterogeneous, including undepleted crust (represented, for example, by early Svecofennian and Archaean granitoids), depleted crust (restitic after rapakivi magma extraction), and to some degree the associated rapakivi magma itself. Significant parts of this crust should be Archaean in age.


2019 ◽  
Vol 60 (5) ◽  
pp. 1063-1094 ◽  
Author(s):  
Wendy R Nelson ◽  
Barry B Hanan ◽  
David W Graham ◽  
Steven B Shirey ◽  
Gezahegn Yirgu ◽  
...  

Abstract Magmatism in the East African Rift System (EARS) contains a spatial and temporal record of changing contributions from the Afar mantle plume, anciently metasomatized lithosphere, the upper mantle and the continental crust. A full understanding of this record requires characterizing volcanic products both within the rift valley and on its flanks. In this study, three suites of mafic, transitional to alkaline lavas, were collected over a northeast-southwest distance of ∼150 km along the southeastern Ethiopian Plateau, adjacent to the Main Ethiopian Rift. Specifically, late Oligocene to Quaternary mafic lavas were collected from Chiro, Debre Sahil and the Bale Mountains. New major element, trace element, 40Ar/39Ar ages and isotopic results (Sr, Nd, Pb, Hf, Os, He) show spatial and temporal variation in the lavas caused by dynamical changes in the source of volcanism during the evolution of the EARS. The trace element compositions of Oligocene and Miocene Chiro lavas indicate derivation from mildly depleted and nominally anhydrous lithospheric mantle, with variable inputs from the crust. Further south, Miocene Debre Sahil and alkaline Bale Mountains lavas have enriched incompatible trace element ratios (e.g. Ba/Nb = 12–43, La/SmN = 3·1–4·9, Tb/YbN = 1·6–2·4). Additionally, their 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf and 206Pb/204Pb values trend toward a radiogenic Pb (HIMU) component. Radiogenic 187Os/188Os in these lavas correlates positively with 206Pb/204Pb and trace element indicators consistent with ancient metasomatic enrichment of their mantle source. In contrast, transitional Miocene Bale Mountains lavas have lower incompatible trace element abundances, less enriched trace element ratios (Ba/Nb ∼7, La/SmN = 2·3–2·5) and less radiogenic isotopic signatures that originate from melting garnet-bearing, anhydrous lithospheric mantle (Tb/YbN = 2·5–2·9). Pliocene and Quaternary Bale Mountains basaltic lavas are chemically and isotopically similar to Main Ethiopian Rift lavas. Trace element and isotopic indicators in both of these suites denote an amphibole-bearing source distinct from that sampled by the older Bale Mountains lavas. Isotopically, Pliocene and Quaternary Bale lavas have notably less radiogenic Sr–Nd–Pb–Hf isotopic ratios. Quaternary Bale Mountains lavas have the strongest mantle plume contribution (3He/4He = 12·1–12·5 RA), while other Bale Mountains, Debre Sahil and Chiro lavas were derived dominantly by melting of lithospheric or upper mantle sources (3He/4He = 5·1–9·1 RA). A multi-stage, regional-scale model of metasomatism and partial melting accounts for the spatial and temporal variations on the southeastern Ethiopian Plateau. Early Debre Sahil and alkaline Bale Mountains mafic lavas are melts derived from Pan-African lithosphere containing amphibole-bearing metasomes, while later transitional Bale basalts are melts of lithosphere containing anhydrous, clinopyroxene-rich veins. These ancient metasomatized domains were eventually removed through preferential melting, potentially during thermal erosion of the lithosphere or lithospheric foundering. Pliocene and Quaternary Bale Mountains lavas erupted after tectonic extension progressed throughout Ethiopia and was accompanied by increased plume influence on the volcanic products.


Sign in / Sign up

Export Citation Format

Share Document