Global synthesis of subglacial lakes and their changing role in a warming climate

Author(s):  
Stephen Livingstone ◽  
Helgi Björnsson ◽  
Jade Bowling ◽  
Winnie Chu ◽  
Christine Dow ◽  
...  

<p>Subglacial lakes provide habitats for life and can modulate ice flow, basal hydrology, biogeochemical fluxes and geomorphic activity. They have been identified widely beneath the ice sheets of Antarctica and Greenland, and detected beneath the ice caps on Devon Island and Iceland, and beneath small valley glaciers. Past investigations focussed on lakes beneath individual ice masses. A scientific synthesis of different lake populations has not been made, so a unified understanding of the mechanisms controlling subglacial lake formation, dynamics, and interaction with other parts of the Earth system is lacking. Here, we integrate existing, often disparate data into a global database of subglacial lakes, enabling subglacial lake characteristics and dynamics to be classified. We use this assessment to evaluate how subglacial lakes shape microbial ecosystems and influence ice flow, subglacial drainage, sediment transport and biogeochemical fluxes. Through our global perspective, we examine how subglacial lake characteristics and function depend on the hydrologic, dynamic and mass balance regime of the ice mass beneath which they are located. By applying this synoptic understanding and perspective, we propose a conceptual model for how subglacial lakes and their impacts on the broader environment will change in a warming world. </p>

2008 ◽  
Vol 54 (185) ◽  
pp. 353-361 ◽  
Author(s):  
Frank Pattyn

AbstractDespite the large amount of subglacial lakes present underneath the East Antarctic ice sheet and the melt processes involved, the hydrology beneath the ice sheet is poorly understood. Changes in subglacial potential gradients may lead to subglacial lake outbursts, discharging excess water through a subglacial drainage system underneath the ice sheet. Such processes can eventually lead to an increase in ice flow. In this paper, a full Stokes numerical ice-sheet model was employed which takes into account the ice flow over subglacial water bodies in hydrostatic equilibrium with the overlying ice. Sensitivity experiments were carried out for small perturbations in ice flow and basal melt rate as a function of ice thickness, general surface slope, ice viscosity and lake size, in order to investigate their influence on the subglacial potential gradient and the impact on subglacial lake drainage. Experiments clearly demonstrate that small changes in surface slope are sufficient to start and sustain episodic subglacial drainage events. Lake drainage can therefore be regarded as a common feature of the subglacial hydrological system and may influence, to a large extent, the present and future behavior of large ice sheets.


2003 ◽  
Vol 37 ◽  
pp. 252-256 ◽  
Author(s):  
Frédérique Rémy ◽  
Laurent Testut ◽  
Benoît Legrésy ◽  
Alessandro Forieri ◽  
Cesido Bianchi ◽  
...  

AbstractPrecise topography from European Remote-sensing Satellite radar altimetry and high density of airborne radio-echo sounding in the area surrounding Dome C, Antarctica, show a link between surface features and subglacial lakes. In this paper, we extend the study to fine structures by computing a curvature-based coefficient (cy) related to surface undulations. These coefficient variations reveal many surface undulations, and some elongated features of this parameter seem to link known subglacial lakes. A population of high values of this coefficient, assumed to correspond to transitions between sliding and non-sliding flow regime, strengthen the appearance of a network which would link most of the lakes in the area. The existence of such a network impacts on ice-flow dynamics and on subglacial-lake studies.


2020 ◽  
Vol 163 ◽  
pp. 04002
Author(s):  
Xiangbin Cui ◽  
Shinan Lang ◽  
Jingxue Guo ◽  
Bo Sun

Over 400 subglacial lakes were discovered in Antarctica through radio-echo sounding (RES) method and remote sensing. Subglacial lakes have significance in lubricating ice-bedrock interface and enhancing ice flow. Moreover, ancient lives may exist in the extreme environment. Since 2015, the “Snow Eagle 601” BT-67 airborne platform has been deployed and applied to map ice sheet and bedrock of Princess Elizabeth Land. One of great motivations of airborne surveys is to detect and search for subglacial lakes in the region. In this paper, we provided preliminary results of RES over both old and new discovered lakes, including Lake Vostok, a potential second large subglacial lake and other lakes beneath interior of the ice sheet in Antarctica.


2019 ◽  
Vol 13 (10) ◽  
pp. 2789-2796 ◽  
Author(s):  
Stephen J. Livingstone ◽  
Andrew J. Sole ◽  
Robert D. Storrar ◽  
Devin Harrison ◽  
Neil Ross ◽  
...  

Abstract. We report three active subglacial lakes within 2 km of the lateral margin of Isunguata Sermia, West Greenland, identified by differencing time-stamped ArcticDEM strips. Each lake underwent one drainage–refill event between 2009 and 2017, with two lakes draining in < 1 month in August 2014 and August 2015. The 2015 drainage caused a ∼ 1-month down-glacier slowdown in ice flow and flooded the foreland, aggrading the proglacial channel by 8 m. The proglacial flooding confirms the ice-surface elevation anomalies as subglacial water bodies and demonstrates how their drainage can significantly modify proglacial environments. These subglacial lakes offer accessible targets for geophysical investigations and exploration.


2012 ◽  
Vol 58 (212) ◽  
pp. 1085-1097 ◽  
Author(s):  
M.P. Brito ◽  
G. Griffiths ◽  
M. Mowlem

AbstractSince their discovery, Antarctic subglacial lakes have become of great interest to the science community. It is hypothesized that they may hold unique forms of biological life and that they hold detailed sedimentary records of past climate change. According to the latest inventory, a total of 387 subglacial lakes have been identified in Antarctica (Wright and Siegert, 2011). However, exploration using scientific probes has yet to be performed. We propose a generic, formal approach to manage the operational risk of deploying probes during clean access to subglacial lake exploration. A representation of the entire probe deployment process is captured in a Markov chain. The transition from one state to the next depends on several factors, including reliability of components and processes. We use fault trees to quantify the probability of failure of the complex processes that must take place to facilitate the transition from one state to another. Therefore, the formal framework consists of integrating a Markov chain, fault trees, component and subsystem reliability data and expert judgment. To illustrate its application we describe how the approach can be used to address a series of what-if scenarios, using the intended Ellsworth Subglacial Lake probe deployment as a case study.


2013 ◽  
Vol 59 (214) ◽  
pp. 315-326 ◽  
Author(s):  
A. Richter ◽  
D.V. Fedorov ◽  
M. Fritsche ◽  
S.V. Popov ◽  
V.Ya. Lipenkov ◽  
...  

AbstractRepeated Global Navigation Satellite Systems (GNSS) observations were carried out at 50 surface markers in the Vostok Subglacial Lake (East Antarctica) region between 2001 and 2011. The horizontal ice flow velocity vectors were derived with accuracies of 1 cm a−1 and 0.5°, representing the first reliable information on ice flow kinematics in the northern part of the lake. Within the lake area, ice flow velocities do not exceed 2 m a−1. The ice flow azimuth is southeast in the southern part of the lake and turns gradually to east-northeast in the northern part. In the northern part, as the ice flow enters the lake at the western shore, the velocity decreases towards the central lake axis, then increases slightly past the central axis. In the southern part, a continued acceleration is observed from the central lake axis across the downstream grounding line. Based on the observed flow velocity vectors and ice thickness data, mean surface accumulation rates are inferred for four surface segments between Ridge B and Vostok Subglacial Lake and show a steady increase towards the north.


1999 ◽  
Vol 45 (150) ◽  
pp. 201-213 ◽  
Author(s):  
E.M. Shoemaker

AbstractThe effect of subglacial lakes upon ice-sheet topography and the velocity patterns of subglacial water-sheet floods is investigated. A subglacial lake in the combined Michigan–Green Bay basin, Great Lakes, North America, leads to: (1) an ice-sheet lobe in the lee of Lake Michigan; (2) a change in orientations of flood velocities across the site of a supraglacial trough aligned closely with Green Bay, in agreement with drumlin orientations; (3) low water velocities in the lee of Lake Michigan where drumlins are absent; and (4) drumlinization occurring in regions of predicted high water velocities. The extraordinary divergence of drumlin orientations near Lake Ontario is explained by the presence of subglacial lakes in the Ontario and Erie basins, along with ice-sheet displacements of up to 30 km in eastern Lake Ontario. The megagrooves on the islands in western Lake Erie are likely to be the product of the late stage of a water-sheet flood when outflow from eastern Lake Ontario was dammed by displaced ice and instead flowed westward along the Erie basin. The Finger Lakes of northern New York state, northeastern U.S.A., occur in a region of likely ice-sheet grounding where water sheets became channelized. Green Bay and Grand Traverse Bay are probably the products of erosion along paths of strongly convergent water-sheet flow.


2016 ◽  
Vol 10 (4) ◽  
pp. 1381-1393 ◽  
Author(s):  
Christine F. Dow ◽  
Mauro A. Werder ◽  
Sophie Nowicki ◽  
Ryan T. Walker

Abstract. The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.


1993 ◽  
Vol 90 (23) ◽  
pp. 11416-11418 ◽  
Author(s):  
H Craig ◽  
H Shoji ◽  
C C Langway

"Craigite," the mixed-air clathrate hydrate found in polar ice caps below the depth of air-bubble stability, is a clathrate mixed crystal of approximate composition (N2O2).6H2O. Recent observations on the Byrd Station Antarctic core show that the air hydrate is present at a depth of 727 m, well above the predicted depth for the onset of hydrate stability. We propose that the air hydrate occurs some 100 m above the equilibrium phase boundary at Byrd Station because of "piezometry"--i.e., that the anomalous depth of hydrate occurrence is a relic of a previous greater equilibrium depth along the flow trajectory, followed by vertical advection of ice through the local phase-boundary depth. Flowline trajectories in the ice based on numerical models show that the required vertical displacement does indeed occur just upstream of Byrd Station. Air-hydrate piezometry can thus be used as a general parameter to study the details of ice flow in polar ice caps and the metastable persistence of the clathrate phase in regions of upwelling blue ice.


2007 ◽  
Vol 53 (181) ◽  
pp. 289-297 ◽  
Author(s):  
Sergey V. Popov ◽  
Valery N. Masolov

AbstractDuring the summer field seasons of 1987–91, studies of central East Antarctica by airborne radio-echo sounding commenced. This scientific work continued in the 1990s in the Vostok Subglacial Lake area and along the traverse route from Mirny, and led to the discovery of 16 new subglacial water cavities in the areas of Domes Fuji and Argus and the Prince Charles Mountains. Twenty-nine subglacial water cavities were revealed in the area near Vostok, along with a feature we believe to be a subglacial river. Two subglacial lakes were discovered along the Mirny–Vostok traverse route. These are located 50 km north of Komsomolskaya station and under Pionerskaya station. We find high geothermal heat flux in the vicinity of the largest of the subglacial lakes, and suggest this may be due to their location over deep faults where additional mantle heat is available.


Sign in / Sign up

Export Citation Format

Share Document