Deep Learning Enhances the Detection of Breeding Birds in UAV Images

Author(s):  
Benjamin Kellenberger ◽  
Thor Veen ◽  
Eelke Folmer ◽  
Devis Tuia

<p>Recently, Unmanned Aerial Vehicles (UAVs) equipped with high-resolution imaging sensors have become a viable alternative for ecologists to conduct wildlife censuses, compared to foot surveys. They cause less disturbance by sensing remotely, they provide coverage of otherwise inaccessible areas, and their images can be reviewed and double-checked in controlled screening sessions. However, the amount of data they generate often makes this photo-interpretation stage prohibitively time-consuming.</p><p>In this work, we automate the detection process with deep learning [4]. We focus on counting coastal seabirds on sand islands off the West African coast, where species like the African Royal Tern are at the top of the food chain [5]. Monitoring their abundance provides invaluable insights into biodiversity in this area [7]. In a first step, we obtained orthomosaics from nadir-looking UAVs over six sand islands with 1cm resolution. We then fully labelled one of them with points for four seabird species, which required three weeks for five annotators to do and resulted in over 21,000 individuals. Next, we further labelled the other five orthomosaics, but in an incomplete manner; we aimed for a low number of only 200 points per species. These points, together with a few background polygons, served as training data for our ResNet-based [2] detection model. This low number of points required multiple strategies to obtain stable predictions, including curriculum learning [1] and post-processing by a Markov random field [6]. In the end, our model was able to accurately predict the 21,000 birds of the test image with 90% precision at 90% recall (Fig. 1) [3]. Furthermore, this model required a mere 4.5 hours from creating training data to the final prediction, which is a fraction of the three weeks needed for the manual labelling process. Inference time is only a few minutes, which makes the model scale favourably to many more islands. In sum, the combination of UAVs and machine learning-based detectors simultaneously provides census possibilities with unprecedentedly high accuracy and comparably minuscule execution time.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.bc5211f4f60067568601161/sdaolpUECMynit/12UGE&app=m&a=0&c=eeda7238e992b9591c2fec19197f67dc&ct=x&pn=gnp.elif&d=1" alt=""></p><p><em>Fig. 1: Our model is able to predict over 21,000 birds in high-resolution UAV images in a fraction of time compared to weeks of manual labelling.</em></p><p> </p><p>References</p><p>1. Bengio, Yoshua, et al. "Curriculum learning." Proceedings of the 26th annual international conference on machine learning. 2009.</p><p>2. He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.</p><p>3. Kellenberger, Benjamin, et al. “21,000 Birds in 4.5 Hours: Efficient Large-scale Seabird Detection with Machine Learning.” Remote Sensing in Ecology and Conservation. Under review.</p><p>4. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-444.</p><p>5. Parsons, Matt, et al. "Seabirds as indicators of the marine environment." ICES Journal of Marine Science 65.8 (2008): 1520-1526.</p><p>6. Tuia, Devis, Michele Volpi, and Gabriele Moser. "Decision fusion with multiple spatial supports by conditional random fields." IEEE Transactions on Geoscience and Remote Sensing 56.6 (2018): 3277-3289.</p><p>7. Veen, Jan, Hanneke Dallmeijer, and Thor Veen. "Selecting piscivorous bird species for monitoring environmental change in the Banc d'Arguin, Mauritania." Ardea 106.1 (2018): 5-18.</p>

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3232 ◽  
Author(s):  
Yan Liu ◽  
Qirui Ren ◽  
Jiahui Geng ◽  
Meng Ding ◽  
Jiangyun Li

Efficient and accurate semantic segmentation is the key technique for automatic remote sensing image analysis. While there have been many segmentation methods based on traditional hand-craft feature extractors, it is still challenging to process high-resolution and large-scale remote sensing images. In this work, a novel patch-wise semantic segmentation method with a new training strategy based on fully convolutional networks is presented to segment common land resources. First, to handle the high-resolution image, the images are split as local patches and then a patch-wise network is built. Second, training data is preprocessed in several ways to meet the specific characteristics of remote sensing images, i.e., color imbalance, object rotation variations and lens distortion. Third, a multi-scale training strategy is developed to solve the severe scale variation problem. In addition, the impact of conditional random field (CRF) is studied to improve the precision. The proposed method was evaluated on a dataset collected from a capital city in West China with the Gaofen-2 satellite. The dataset contains ten common land resources (Grassland, Road, etc.). The experimental results show that the proposed algorithm achieves 54.96% in terms of mean intersection over union (MIoU) and outperforms other state-of-the-art methods in remote sensing image segmentation.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2021 ◽  
Author(s):  
Timo Kumpula ◽  
Janne Mäyrä ◽  
Anton Kuzmin ◽  
Arto Viinikka ◽  
Sonja Kivinen ◽  
...  

&lt;p&gt;Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. Different proxy variables indicating species richness and quality of the sites are essential for efficient detecting and monitoring forest biodiversity. European aspen (Populus tremula L.) is a minor deciduous tree species with a high importance in maintaining biodiversity in boreal forests. Large aspen trees host hundreds of species, many of them classified as threatened. However, accurate fine-scale spatial data on aspen occurrence remains scarce and incomprehensive.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We studied detection of aspen using different remote sensing techniques in Evo, southern Finland. Our study area of 83 km&lt;sup&gt;2&lt;/sup&gt; contains both managed and protected southern boreal forests characterized by Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), whereas European aspen has a relatively sparse and scattered occurrence in the area. We collected high-resolution airborne hyperspectral and airborne laser scanning data covering the whole study area and ultra-high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors from selected parts of the area. We tested the discrimination of aspen from other species at tree level using different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Airborne hyperspectral and lidar data gave excellent results with machine learning and deep learning classification methods The highest classification accuracies for aspen varied between 91-92% (F1-score). The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724&amp;#8211;727 nm) and shortwave infrared (1520&amp;#8211;1564 nm and 1684&amp;#8211;1706 nm) (Viinikka et al. 2020; M&amp;#228;yr&amp;#228; et al 2021). Aspen detection using RGB and multispectral data also gave good results (highest F1-score of aspen = 87%) (Kuzmin et al 2021). Different remote sensing data enabled production of a spatially explicit map of aspen occurrence in the study area. Information on aspen occurrence and abundance can significantly contribute to biodiversity management and conservation efforts in boreal forests. Our results can be further utilized in upscaling efforts aiming at aspen detection over larger geographical areas using satellite images.&lt;/p&gt;


2019 ◽  
Vol 11 (7) ◽  
pp. 755 ◽  
Author(s):  
Xiaodong Zhang ◽  
Kun Zhu ◽  
Guanzhou Chen ◽  
Xiaoliang Tan ◽  
Lifei Zhang ◽  
...  

Object detection on very-high-resolution (VHR) remote sensing imagery has attracted a lot of attention in the field of image automatic interpretation. Region-based convolutional neural networks (CNNs) have been vastly promoted in this domain, which first generate candidate regions and then accurately classify and locate the objects existing in these regions. However, the overlarge images, the complex image backgrounds and the uneven size and quantity distribution of training samples make the detection tasks more challenging, especially for small and dense objects. To solve these problems, an effective region-based VHR remote sensing imagery object detection framework named Double Multi-scale Feature Pyramid Network (DM-FPN) was proposed in this paper, which utilizes inherent multi-scale pyramidal features and combines the strong-semantic, low-resolution features and the weak-semantic, high-resolution features simultaneously. DM-FPN consists of a multi-scale region proposal network and a multi-scale object detection network, these two modules share convolutional layers and can be trained end-to-end. We proposed several multi-scale training strategies to increase the diversity of training data and overcome the size restrictions of the input images. We also proposed multi-scale inference and adaptive categorical non-maximum suppression (ACNMS) strategies to promote detection performance, especially for small and dense objects. Extensive experiments and comprehensive evaluations on large-scale DOTA dataset demonstrate the effectiveness of the proposed framework, which achieves mean average precision (mAP) value of 0.7927 on validation dataset and the best mAP value of 0.793 on testing dataset.


2021 ◽  
Vol 13 (11) ◽  
pp. 2052
Author(s):  
Dongchuan Yan ◽  
Guoqing Li ◽  
Xiangqiang Li ◽  
Hao Zhang ◽  
Hua Lei ◽  
...  

Dam failure of tailings ponds can result in serious casualties and environmental pollution. Therefore, timely and accurate monitoring is crucial for managing tailings ponds and preventing damage from tailings pond accidents. Remote sensing technology facilitates the regular extraction and monitoring of tailings pond information. However, traditional remote sensing techniques are inefficient and have low levels of automation, which hinders the large-scale, high-frequency, and high-precision extraction of tailings pond information. Moreover, research into the automatic and intelligent extraction of tailings pond information from high-resolution remote sensing images is relatively rare. However, the deep learning end-to-end model offers a solution to this problem. This study proposes an intelligent and high-precision method for extracting tailings pond information from high-resolution images, which improves deep learning target detection model: faster region-based convolutional neural network (Faster R-CNN). A comparison study is conducted and the model input size with the highest precision is selected. The feature pyramid network (FPN) is adopted to obtain multiscale feature maps with rich context information, the attention mechanism is used to improve the FPN, and the contribution degrees of feature channels are recalibrated. The model test results based on GoogleEarth high-resolution remote sensing images indicate a significant increase in the average precision (AP) and recall of tailings pond detection from that of Faster R-CNN by 5.6% and 10.9%, reaching 85.7% and 62.9%, respectively. Considering the current rapid increase in high-resolution remote sensing images, this method will be important for large-scale, high-precision, and intelligent monitoring of tailings ponds, which will greatly improve the decision-making efficiency in tailings pond management.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


Author(s):  
K. Suzuki ◽  
M. Claesen ◽  
H. Takeda ◽  
B. De Moor

Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly pushed ‘shallow’ machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view, utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms for the sake of generally fast and fine optimization, which enables us not only to optimize (hyper)parameters but also to determine appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets, common datasets in computer vision field for character recognition and object recognition problems respectively, our automated learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset), small amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high possibility that our approach contributes to general classification problems.


2019 ◽  
Vol 8 (4) ◽  
pp. 191 ◽  
Author(s):  
Philipp Schuegraf ◽  
Ksenia Bittner

Recent technical developments made it possible to supply large-scale satellite image coverage. This poses the challenge of efficient discovery of imagery. One very important task in applications like urban planning and reconstruction is to automatically extract building footprints. The integration of different information, which is presently achievable due to the availability of high-resolution remote sensing data sources, makes it possible to improve the quality of the extracted building outlines. Recently, deep neural networks were extended from image-level to pixel-level labelling, allowing to densely predict semantic labels. Based on these advances, we propose an end-to-end U-shaped neural network, which efficiently merges depth and spectral information within two parallel networks combined at the late stage for binary building mask generation. Moreover, as satellites usually provide high-resolution panchromatic images, but only low-resolution multi-spectral images, we tackle this issue by using a residual neural network block. It fuses those images with different spatial resolution at the early stage, before passing the fused information to the Unet stream, responsible for processing spectral information. In a parallel stream, a stereo digital surface model (DSM) is also processed by the Unet. Additionally, we demonstrate that our method generalizes for use in cities which are not included in the training data.


2021 ◽  
Vol 13 (8) ◽  
pp. 1507
Author(s):  
Haibo Wang ◽  
Jianchao Qi ◽  
Yufei Lei ◽  
Jun Wu ◽  
Bo Li ◽  
...  

Automatic detection of newly constructed building areas (NCBAs) plays an important role in addressing issues of ecological environment monitoring, urban management, and urban planning. Compared with low-and-middle resolution remote sensing images, high-resolution remote sensing images are superior in spatial resolution and display of refined spatial details. Yet its problems of spectral heterogeneity and complexity have impeded research of change detection for high-resolution remote sensing images. As generalized machine learning (including deep learning) technologies proceed, the efficiency and accuracy of recognition for ground-object in remote sensing have been substantially improved, providing a new solution for change detection of high-resolution remote sensing images. To this end, this study proposes a refined NCBAs detection method consisting of four parts based on generalized machine learning: (1) pre-processing; (2) candidate NCBAs are obtained by means of bi-temporal building masks acquired by deep learning semantic segmentation, and then registered one by one; (3) rules and support vector machine (SVM) are jointly adopted for classification of NCBAs with high, medium and low confidence; and (4) the final vectors of NCBAs are obtained by post-processing. In addition, area-based and pixel-based methods are adopted for accuracy assessment. Firstly, the proposed method is applied to three groups of GF1 images covering the urban fringe areas of Jinan, whose experimental results are divided into three categories: high, high-medium, and high-medium-low confidence. The results show that NCBAs of high confidence share the highest F1 score and the best overall effect. Therefore, only NCBAs of high confidence are considered to be the final detection result by this method. Specifically, in NCBAs detection for three groups GF1 images in Jinan, the mean Recall of area-based and pixel-based assessment methods reach around 77% and 91%, respectively, the mean Pixel Accuracy (PA) 88% and 92%, and the mean F1 82% and 91%, confirming the effectiveness of this method on GF1. Similarly, the proposed method is applied to two groups of ZY302 images in Xi’an and Kunming. The scores of F1 for two groups of ZY302 images are also above 90% respectively, confirming the effectiveness of this method on ZY302. It can be concluded that adoption of area registration improves registration efficiency, and the joint use of prior rules and SVM classifier with probability features could avoid over and missing detection for NCBAs. In practical applications, this method is contributive to automatic NCBAs detection from high-resolution remote sensing images.


2018 ◽  
Vol 10 (12) ◽  
pp. 2067 ◽  
Author(s):  
Lingcao Huang ◽  
Lin Liu ◽  
Liming Jiang ◽  
Tingjun Zhang

Thawing of ice-rich permafrost causes thermokarst landforms on the ground surface. Obtaining the distribution of thermokarst landforms is a prerequisite for understanding permafrost degradation and carbon exchange at local and regional scales. However, because of their diverse types and characteristics, it is challenging to map thermokarst landforms from remote sensing images. We conducted a case study towards automatically mapping a type of thermokarst landforms (i.e., thermo-erosion gullies) in a local area in the northeastern Tibetan Plateau from high-resolution images by the use of deep learning. In particular, we applied the DeepLab algorithm (based on Convolutional Neural Networks) to a 0.15-m-resolution Digital Orthophoto Map (created using aerial photographs taken by an Unmanned Aerial Vehicle). Here, we document the detailed processing flow with key steps including preparing training data, fine-tuning, inference, and post-processing. Validating against the field measurements and manual digitizing results, we obtained an F1 score of 0.74 (precision is 0.59 and recall is 1.0), showing that the proposed method can effectively map small and irregular thermokarst landforms. It is potentially viable to apply the designed method to mapping diverse thermokarst landforms in a larger area where high-resolution images and training data are available.


Sign in / Sign up

Export Citation Format

Share Document