Modeling underwater sound from future offshore wind farms southeast of Gran Canaria Island

Author(s):  
Melania Cubas Armas ◽  
Alonso Hernández-Guerra ◽  
Eric Delory ◽  
David Dellong ◽  
Verónica Caínzos ◽  
...  

<p>The European Union aims to achieve carbon neutrality by 2050. Therefore, it is crucial to increase the use of renewable energy. One clean energy source is the wind, and during the last decades, several countries have developed wind farms, not only on land but also in the ocean. Most offshore wind farms have been installed in shallow waters; however, recently, open ocean offshore floating wind farms are being installed in deep waters due to stronger and steadier wind occurring in these areas. Thus, offshore wind turbines are a potential new source of underwater noise. Noise can propagate underwater having the potential to affect marine mammals and fish, among others. Floating wind turbines are known to reduce the installation and decommissioning noise in contrast to fixed-bottom turbines but, nevertheless, the noise produced by the operation of the turbines and the anchoring systems have been scarcely studied, and it is still unknown whether added noise could significantly affect behavior or even hearing capacity in the long term. In the framework of the JONAS European project we anticipate a regional use case with a future installation of a commercial offshore wind farm, to determine how noise would propagate in the region, from installation to operation, and potentially impact (or not) local fauna, focusing initially on mammal groups. In this study, we use the RAM model (Range-dependent acoustic model) which is a parabolic equation (PE) code that calculates the propagation of sound in the ocean using the split-step Padé solution. RAM needs information about the temperature and salinity in the water column to calculate sound speed profiles, as well as the bathymetry and a geo-acoustic model of the bottom. It returns the transmission loss depending on the depth and distance to the source. We have applied the RAM model to an area located in the southeast of Gran Canaria Island, where a plan for a floating wind farm is under consideration. Results and suggestions about the negative impact on marine mammals known to live in this location are presented.</p>

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3457
Author(s):  
Robin Brabant ◽  
Yves Laurent ◽  
Bob Jonge Poerink ◽  
Steven Degraer

Bats undertaking seasonal migration between summer roosts and wintering areas can cross large areas of open sea. Given the known impact of onshore wind turbines on bats, concerns were raised on whether offshore wind farms pose risks to bats. Better comprehension of the phenology and weather conditions of offshore bat migration are considered as research priorities for bat conservation and provide a scientific basis for mitigating the impact of offshore wind turbines on bats. This study investigated the weather conditions linked to the migratory activity of Pipistrellus bats at multiple near- and offshore locations in the Belgian part of the North Sea. We found a positive relationship between migratory activity and ambient temperature and atmospheric pressure and a negative relationship with wind speed. The activity was highest with a wind direction between NE and SE, which may favor offshore migration towards the UK. Further, we found a clear negative relationship between the number of detections and the distance from the coast. At the nearshore survey location, the number of detections was up to 24 times higher compared to the offshore locations. Our results can support mitigation strategies to reduce offshore wind farm effects on bats and offer guidance in the siting process of new offshore wind farms.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8000
Author(s):  
Abel Arredondo-Galeana ◽  
Feargal Brennan

The offshore wind sector is expanding to deep water locations through floating platforms. This poses challenges to horizontal axis wind turbines (HAWTs) due to the ever growing size of blades and floating support structures. As such, maintaining the structural integrity and reducing the levelised cost of energy (LCoE) of floating HAWTs seems increasingly difficult. An alternative to these challenges could be found in floating offshore vertical axis wind turbines (VAWTs). It is known that VAWTs have certain advantages over HAWTs, and in fact, some small-scale developers have successfully commercialised their onshore prototypes. In contrast, it remains unknown whether VAWTs can offer an advantage for deep water floating offshore wind farms. Therefore, here we present a multi-criteria review of different aspects of VAWTs to address this question. It is found that wind farm power density and reliability could be decisive factors to make VAWTs a feasible alternative for deep water floating arrays. Finally, we propose a way forward based on the findings of this review.


2019 ◽  
Vol 107 ◽  
pp. 01004
Author(s):  
Haiyan Tang ◽  
Guanglei Li ◽  
Linan Qu ◽  
Yan Li

A large offshore wind farm usually consists of dozens or even hundreds of wind turbines. Due to the limitation of the simulation scale, it is necessary to develop an equivalent model of offshore wind farms for power system studies. At present, the aggregation method is widely adopted for wind farm equivalent modeling. In this paper, the topology, electrical parameters, operating conditions and individual turbine characteristics of the offshore wind farms are taken into consideration. Firstly, the output power distribution of offshore wind farm, the voltage distribution of the collector system and the fault ride-through characteristics of wind turbines are analyzed. Then, a dynamic equivalent modeling method for offshore wind farms is developed based on the fault characteristics analysis. Finally, the proposed method is validated through time-domain simulation.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 448
Author(s):  
Jens Nørkær Sørensen ◽  
Gunner Christian Larsen

A numerical framework for determining the available wind power and associated costs related to the development of large-scale offshore wind farms is presented. The idea is to develop a fast and robust minimal prediction model, which with a limited number of easy accessible input variables can determine the annual energy output and associated costs for a specified offshore wind farm. The utilized approach combines an energy production model for offshore-located wind farms with an associated cost model that only demands global input parameters, such as wind turbine rotor diameter, nameplate capacity, area of the wind farm, number of turbines, water depth, and mean wind speed Weibull parameters for the site. The cost model includes expressions for the most essential wind farm cost elements—such as costs of wind turbines, support structures, cables and electrical substations, as well as costs of operation and maintenance—as function of rotor size, interspatial distance between the wind turbines, and water depth. The numbers used in the cost model are based on previous but updatable experiences from offshore wind farms, and are therefore, in general, moderately conservative. The model is validated against data from existing wind farms, and shows generally a very good agreement with actual performance and cost results for a series of well-documented wind farms.


2017 ◽  
Vol 2 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Niko Mittelmeier ◽  
Julian Allin ◽  
Tomas Blodau ◽  
Davide Trabucchi ◽  
Gerald Steinfeld ◽  
...  

Abstract. For offshore wind farms, wake effects are among the largest sources of losses in energy production. At the same time, wake modelling is still associated with very high uncertainties. Therefore current research focusses on improving wake model predictions. It is known that atmospheric conditions, especially atmospheric stability, crucially influence the magnitude of those wake effects. The classification of atmospheric stability is usually based on measurements from met masts, buoys or lidar (light detection and ranging). In offshore conditions these measurements are expensive and scarce. However, every wind farm permanently produces SCADA (supervisory control and data acquisition) measurements. The objective of this study is to establish a classification for the magnitude of wake effects based on SCADA data. This delivers a basis to fit engineering wake models better to the ambient conditions in an offshore wind farm. The method is established with data from two offshore wind farms which each have a met mast nearby. A correlation is established between the stability classification from the met mast and signals within the SCADA data from the wind farm. The significance of these new signals on power production is demonstrated with data from two wind farms with met mast and long-range lidar measurements. Additionally, the method is validated with data from another wind farm without a met mast. The proposed signal consists of a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity (TI) when the wind turbines were operating in partial load. It allows us to distinguish between conditions with different magnitudes of wake effects. The proposed signal is very sensitive to increased turbulence induced by neighbouring turbines and wind farms, even at a distance of more than 38 rotor diameters.


2020 ◽  
Vol 184 ◽  
pp. 01094
Author(s):  
C Lavanya ◽  
Nandyala Darga Kumar

Wind energy is the renewable sources of energy and it is used to generate electricity. The wind farms can be constructed on land and offshore where higher wind speeds are prevailing. Most offshore wind farms employ fixed-foundation wind turbines in relatively shallow water. In deep waters floating wind turbines have gained popularity and are recent development. This paper discusses the various types of foundations which are in practice for use in wind turbine towers installed on land and offshore. The applicability of foundations based on depth of seabed and distance of wind farm from the shore are discussed. Also, discussed the improvement methods of weak or soft soils for the foundations of wind turbine towers.


2017 ◽  
Vol 9 (6) ◽  
pp. 1461-1484 ◽  
Author(s):  
Long Wang ◽  
Guoping Chen ◽  
Tongguang Wang ◽  
Jiufa Cao

AbstractWith lower turbulence and less rigorous restrictions on noise levels, offshore wind farms provide favourable conditions for the development of high-tip-speed wind turbines. In this study, the multi-objective optimization is presented for a 5MW wind turbine design and the effects of high tip speed on power output, cost and noise are analysed. In order to improve the convergence and efficiency of optimization, a novel type of gradient-based multi-objective evolutionary algorithm is proposed based on uniform decomposition and differential evolution. Optimization examples of the wind turbines indicate that the new algorithm can obtain uniformly distributed optimal solutions and this algorithm outperforms the conventional evolutionary algorithms in convergence and optimization efficiency. For the 5MW wind turbines designed, increasing the tip speed can greatly reduce the cost of energy (COE). When the tip speed increases from 80m/s to 100m/s, under the same annual energy production, the COE decreases by 3.2% in a class I wind farm and by 5.1% in a class III one, respectively, while the sound pressure level increases by a maximum of 4.4dB with the class III wind farm case.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Olatz Grande ◽  
Josune Cañizo ◽  
Itziar Angulo ◽  
David Jenn ◽  
Laith R. Danoon ◽  
...  

The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars’ detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Binbin Zhang ◽  
Jun Liu

This paper proposed the SVD (singular value decomposition) clustering algorithm to cluster wind turbines into some group for a large offshore wind farm, in order to reduce the high-dimensional problem in wind farm power control and numerical simulation. Firstly, wind farm wake relationship matrixes are established considering the wake effect in an offshore wind farm, and the SVD of wake relationship matrixes is used to cluster wind turbines into some groups by the fuzzy clustering algorithm. At last, the Horns Rev offshore wind farm is analyzed to test the clustering algorithm, and the clustering result and the power simulation show the effectiveness and feasibility of the proposed clustering strategy.


2014 ◽  
pp. 179-183
Author(s):  
Matthew Shanley

There is a rapid increase in the number of offshore wind farms in European waters to help meet renewable energy targets. Wind turbines are being installed in progressively more exposed areas of the North Sea and the Irish Sea, with the eventual aim of placing them in the Atlantic Ocean. As offshore wind farms require regular maintenance, being able to access the wind turbines during rough sea conditions is a key issue for profitable operation. The operation involves transferring personnel from the service ship to the wind turbine. The current wave height limit for this is 1.5 m, slightly less than 5 feet, increasing this results in significant savings over the lifetime of the wind farm. Each wind farm service ship has 12 maintenance crew. Imagine you are one waiting on port for the sea and weather conditions to be right so that you can head out to the wind ...


Sign in / Sign up

Export Citation Format

Share Document