Crustal folds alter local stress fields as demonstrated by magma sheet – fold interactions in the Central Andes

Author(s):  
Matías Clunes ◽  
John Browning ◽  
José Cembrano ◽  
Carlos Marquardt ◽  
Agust Gudmundsson

<p>For magma chambers to form or volcanic eruptions to occur magma must propagate through the crust as dikes, inclined sheets and sills. The vast majority of models that investigate magma paths assume the crust to be either homogeneous or horizontally layered, often composed of rocks of contrasting mechanical properties. In subduction regions that have experienced orogenesis, like the Andes, the crust has been deformed over several million years, resulting in rock layers that are commonly folded and steeply dipping. The assumption of homogeneous properties or horizontal layering then does not capture all of the potential magma path crustal interactions. Here we tackle this problem by determining the effect of a crust made of steeply inclined layers in which sills and inclined sheets are emplaced. We combine field observations from a sill emplaced in the core of an anticlinal fold at El Juncal in the Chilean Central Andes, such as lithologies, sill and fold limbs attitude, sill length and layers and sill thickness, with a suite of finite element method models to explore the mechanical interactions between inclined layers and magma paths. Our results demonstrate that the properties of the host rock layers as well as the contacts between the layers and the crustal geometry all play an important role on magma propagation and emplacement at shallow levels. Sill propagation and emplacement through heterogeneous and anisotropic crustal segments changes the crustal stress field promoting sill arrest, deflection or propagation. Specifically, sills are more likely to be deflected when encountering shallow dipping layers rather than steeply dipping layers of a fold. Mechanically weak contacts encourage sill deflection due to the related rotation of the maximum principal compressive stress and this effect is attenuated when the fold layers are more steeply dipping. This processes may change the amount and style of surface deformation recorded, with significant implications for monitoring of active volcanoes.</p>

2006 ◽  
Vol 158 (3-4) ◽  
pp. 257-268 ◽  
Author(s):  
Agust Gudmundsson ◽  
Sonja L. Philipp

2009 ◽  
Vol 47 (4) ◽  
Author(s):  
A. Gudmundsson ◽  
L. S. Brenner

Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes) that are opened by magmatic overpressure. While (inferred) dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces) infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear) strength while the same strength is not exceeded at the (arrested) dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses), layers with relatively high dyke-normal compressive stresses (stress barriers), and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward inversion of surface geodetic data may lead to unreliable geometries of arrested dykes in active rift zones and volcanic edifices.


2020 ◽  
Author(s):  
Bodo Bookhagen ◽  
Manfred R. Strecker ◽  
Jonathan R. Weiss ◽  
Ricardo N. Alonso

<p>With an average elevation of about 3.7 km the semi-arid to arid Central Andean Plateau (Altiplano-Puna) constitutes the world’s second largest orogenic plateau. The internally drained region is characterized by compressional basin-and-range topography. Many of the basins in the Argentine sector of the plateau (Puna) are presently evaporitic salt pans, but during the Pleistocene the basins have repeatedly experienced high lake-level phases during pluvial periods. Due to protracted sedimentary infilling and sustained internal drainage conditions the basins have thick sedimentary sequences that have partially coalesced. The basins are bordered by reverse-fault bounded ranges, reaching 5 to 6 km elevation, but the history and extent of tectonic deformation in this region is not very well known. Global Navigation Satellite System<span> (</span>GNSS) data have been used to estimate decadal-scale tectonic shortening rates but the spatiotemporal pattern of surface deformation is complex and includes the compounding effects of subduction zone megathrust earthquake transients.</p><p>Here, we use a combination of field observations, cosmogenic nuclide dating of deformed alluvial-fan surfaces, Interferometric Synthetic Aperture Radar (InSAR), and GNSS data time series to quantify Quaternary to decadal-scale tectonic deformation. The arid mountain ranges provide ideal conditions to observe deformation from multiple sensors, including TerraSAR-X, Sentinel-1, ALOS2, and ENVISAT. Furthermore, we rely on 12 m TanDEM-X topographic data to characterize 10<sup>3</sup>-10<sup>6</sup> yr surface deformation using cosmogenic nuclide exposure dating and digital elevation model analysis.</p><p> The Puna has been previously characterized as a region with little tectonic activity including very low levels of seismicity despite evidence for strike-slip and extensional faulting accompanied by mafic volcanism. The eastern plateau margins in particular record this type of kinematic regime, while the adjacent foreland is characterized by a higher level of seismicity and ongoing contraction. Here, we present evidence of ongoing contraction during the past two decades compatible with tectono-geomorphic phenomena that support the notion of tectonic shortening in the central Puna Plateau. For example, tilted shorelines associated with former lake-highstands along the flanks of an anticline and Neogene-Pleistocene growth strata associated with this structure indicate that shortening in this region has been sustained since the Neogene. InSAR and GNSS time series analysis permit the identification and characterization of previously unrecognized tectonic activity in adjacent sectors of the intermontane basins, thus helping to improve our understanding of crustal dynamics in the Central Andes.</p>


2021 ◽  
Vol 570 ◽  
pp. 117080
Author(s):  
Matías Clunes ◽  
John Browning ◽  
José Cembrano ◽  
Carlos Marquardt ◽  
Agust Gudmundsson

2015 ◽  
Vol 112 (30) ◽  
pp. 9210-9215 ◽  
Author(s):  
Linda R. Manzanilla

In this paper, I address the case of a corporate society in Central Mexico. After volcanic eruptions triggered population displacements in the southern Basin of Mexico during the first and fourth centuries A.D., Teotihuacan became a multiethnic settlement. Groups from different backgrounds settled primarily on the periphery of the metropolis; nevertheless, around the core, intermediate elites actively fostered the movement of sumptuary goods and the arrival of workers from diverse homelands for a range of specialized tasks. Some of these skilled craftsmen acquired status and perhaps economic power as a result of the dynamic competition among neighborhoods to display the most lavish sumptuary goods, as well as to manufacture specific symbols of identity that distinguished one neighborhood from another, such as elaborate garments and headdresses. Cotton attire worn by the Teotihuacan elite may have been one of the goods that granted economic importance to neighborhood centers such as Teopancazco, a compound that displayed strong ties to the Gulf Coast where cotton cloth was made. The ruling elite controlled raw materials that came from afar whereas the intermediate elite may have been more active in providing other sumptuary goods: pigments, cosmetics, slate, greenstone, travertine, and foreign pottery. The contrast between the corporate organization at the base and top of Teotihuacan society and the exclusionary organization of the neighborhoods headed by the highly competitive intermediate elite introduced tensions that set the stage for Teotihuacan’s collapse.


Author(s):  
Ramesh Talreja

Structural integrity of composite materials is governed by failure mechanisms that initiate at the scale of the microstructure. The local stress fields evolve with the progression of the failure mechanisms. Within the full span from initiation to criticality of the failure mechanisms, the governing length scales in a fibre-reinforced composite change from the fibre size to the characteristic fibre-architecture sizes, and eventually to a structural size, depending on the composite configuration and structural geometry as well as the imposed loading environment. Thus, a physical modelling of failure in composites must necessarily be of multi-scale nature, although not always with the same hierarchy for each failure mode. With this background, the paper examines the currently available main composite failure theories to assess their ability to capture the essential features of failure. A case is made for an alternative in the form of physical modelling and its skeleton is constructed based on physical observations and systematic analysis of the basic failure modes and associated stress fields and energy balances. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.


2021 ◽  
Vol 85 (4) ◽  
pp. 443-473
Author(s):  
Anna Björk Einarsdóttir

The fight against imperialism and racism was central to the Comintern's political and cultural program of the interwar period. Although the more immediate interests of the Soviet state would come to overshadow such causes, the cultural and political connections forged during this time influenced later forms of organizing. Throughout the interwar period (1918-39), the Soviet Union served as the core location of a newly formed world-system of socialist and communist radicalism. The origin of Latin American Marxism in the work of the Peruvian theorist and political organizer José Carlos Mariátegui, as well as the politically committed literature associated with the interwar communist left in the Andean region of Latin America, shows how literature and theory devoted to the indigenous revolutionary contributed to interwar Marxist debates. The interwar influence of Mariátegui and César Vallejo makes clear the importance of resisting attempts to drive a wedge between the two authors and the broader communist movement at the time.


2011 ◽  
Vol 368-373 ◽  
pp. 489-494 ◽  
Author(s):  
Xu Lin Tang ◽  
Jian Cai ◽  
Qing Jun Chen ◽  
An He ◽  
Chun Yang

In order to study the mechanical behavior of the joint between concrete filled steel tubular column and beam with discontinuous column tube at the joint zone under axial pressure, the finite element analysis software ANSYS is adopted for parametric analysis and the analysis results are compared with experimental ones. The principal compressive stress is mainly transmitted by the inside area of the joint which is subjected to local compression if it is low, but extends to more outside areas of the joint if it is high. The radial compressive stress, which is the confined stress of the ring beam to the core concrete of the joint, keeps the same as that the width of the ring beam equal to the diameter of the core area of the joint. The vertical strain on the edge of the joint, which would lead to horizontal annular cracks in the side face of the ring beam, changes from tension in the whole height to tension only in the top part and compression in the lower part of the joint, which is consistent with the experimental phenomenon.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012064
Author(s):  
V L Hilarov ◽  
E E Damaskinskaya

Abstract Based on the Zhurkov’s kinetic concept of solids’ fracture a local internal stress estimation method is introduced. Stress field is computed from the time series of acoustic emission intervals between successive signals. For the case of two structurally different materials the time evolution of these stresses is examined. It is shown that temporal changes of these stresses’ accumulation law may serve as a precursor of incoming macroscopic fracture.


Sign in / Sign up

Export Citation Format

Share Document