The influence of backstop geometry in the structural style of the Eastern Cordillera of Colombia: A sandbox modeling approach 

Author(s):  
Camilo Andrés Conde Carvajal ◽  
Cristhian Bolívar Riascos Rodríguez ◽  
Michael Andres Avila Paez ◽  
Andreas Kammer

<p>Among the foreland belts of the Andean mountain system, the Eastern Cordillera of Colombia (EC) represents a unique example of an isolated, bi-vergent mountain belt. In contrast, to block tectonics of broken foreland basins, it displays a ductile deformation style which involves two mountain fronts with a structural relief of the order of 10 km. Internal parts of the EC have been shortened by buckling at high and a homogeneously strained basement at deeper structural levels. These deformation patterns likely attest to conditions of a thermally weakened backarc setting. Two opposed scenarios have been postulated for its surface uplift and consequent exhumation: 1) an E-migrating deformation front and the formation of progressively forward breaking faults; and 2) the pop-up of a weak crustal welt enclosed by strong foreland blocks. In this latter setting, a synchronous early formation of marginal mountain fronts and a late-stage surface uplift of a central domain may be anticipated. These two constellations compare, in terms of a contrasting model setup, to a foreland migrating orogenic wedge or a relatively stable, doubly vergent wedge formed above a structural discontinuity or rheologic boundaries that acted as sites for the nucleation of the marginal faults.</p><p>In this contribution, we opt to examine the “boundary” conditions for the development of a doubly vergent wedge formed at the tip line of a rigid tapering backstop, that simulates a rigid foreland block. With respect to the shape of this backstop, we examine the effects of tip angles less than the angle of internal friction (<30°) and find, that at a low tip angle of 10° the pop-up evolves above a forward-breaking principal kink-band with the synchronous formation of a sequence of conjugate back-kinks that cut into the sand pack, as it is pushed toward the backstop. At a moderate tip angle of 20<sup>o </sup>the forward-breaking kink-band is slightly steeper than the backstop and gives rise to a frontal fold with an overturned limb. This latter geometrical configuration loosely compares to the structural relations of a structural section through the high plains of Bogotá, where the eastern mountain front defines a strongly deformed antiform, that is juxtaposed against an undeformed margin of the adjacent Guyana shield.</p>

2021 ◽  
Author(s):  
Hoori Ajami ◽  
Adam Schreiner-McGraw

<p>Mountain System Recharge (MSR) is one of the main components of recharge in many arid and semi-arid aquifers, yet the mechanisms of MSR in high-elevation mountain ranges are poorly understood. The complexity of recharge processes and the lack of groundwater observations in mountain catchments contribute to this problem. MSR consists of two distinct pathways: 1) mountain bedrock aquifer recharge (MAR) consists of snowmelt or rainfall derived infiltration into the mountain bedrock, which either discharges to streams as baseflow or reaches an alluvial aquifer in an adjacent valley via lateral subsurface flow referred to as mountain block recharge (MBR), and 2) Mountain front recharge (MFR) consists of streamflow infiltration at the mountain front. Here, we apply streamflow recession analysis across 11 anthropogenically unaffected catchments in the Sierra Nevada to derive seasonally distinct storage-discharge functions and quantify MAR in response to changes in precipitation. Median annual recharge efficiencies (ratio of annual MAR to precipitation) range from 4 to 28% and can reach up to 60% during the wettest years on record. We implement a global sensitivity analysis to identify parameters that significantly impact MAR rates. Results illustrate that MAR estimates are mostly sensitive to the filter parameters for streamflow data selection used during the recession analysis, and the number of dry days after a rain event where streamflow data are excluded has the greatest impact. Our results demonstrate that storage-discharge functions are useful for quantifying groundwater recharge in mountainous catchments under perennial flow conditions. However, estimated MAR rates are impacted by the uncertainty in streamflow data, filtering of streamflow time series and model structure. Future work will be focused on quantifying uncertainty in MAR estimates caused from various sources.</p><p> </p>


Author(s):  
Alexandre Uhlein ◽  
Marco Antônio Fonseca ◽  
Hildor José Seer ◽  
Marcel Auguste Dardenne

A Faixa neoproterozóica de dobramentos e empurrões Brasília é uma das unidades tectônicas do Brasil Central. Uma análiseestrutural e tectônica da Faixa Brasília é aqui apresentada, com dois domínios estruturais: (1) interno, com unidades alóctones, foliação Spsubhorizontal ou suavemente dobrada e médio a alto grau de metamorfismo. (2) domínio externo, com estrutura de dobras e empurrões,predomínio de foliação Sp e médio a baixo grau de metamorfismo. A leste da Faixa Brasília ocorre o domínio cratônico (Craton do São Francisco), com unidades autóctones, suavemente dobradas. A vergência das dobras e empurrões é, geralmente, para o Cráton do SãoFrancisco. O encurtamento na cobertura é balanceado por zonas de cisalhamento, amplas dobras, falhas de empurrão e inversas e falhastranscorrentes. O estilo da deformação varia com o nível crustal. Assim, no domínio externo da faixa, predomina um estilo thin-skinned,enquanto que no domínio interno, aparecem zonas de deformação dúcteis mais intensas e largas, com metamorfismo mais alto (estilothick-skinned). O segmento sul da Faixa Brasília está mais deformado e provavelmente representa o resultado de uma colisão diacrônica,mais antiga, em relação ao setor setentrional. A mega inflexão dos Pirineus e a zona de superposição pode ser o resultado da interferênciaentre duas faixas neoproterozóicas distintas, com transporte tectônico local de Norte para o Sul.Palavras chave: Faixa móvel neoproterozóica Brasília; estilo nstrutural; evolução geodinâmica. ABSTRACTTECTONICS OF THE BRASÍLIA FOLD BELT: THE NORTHERN AND SOUTHERN PARTS - The Neoproterozoic (ca. 650-580) Ma Brasíliafold-and-thrust-belt is a major tectonic unit in Central Brazil and can be divided into two structural domains (internal and external). In theinternal domain, most surface rocks consist of allochthonous units in a higher metamorphic grade displaying low dipping cleavage,asymmetrical folds and thrusts with significant stratigraphic repetition. The external domain is a typical foreland fold-and-thrust belt wheremedium to low grade metamorphic rocks prevail and present steeply dipping cleavage Sp. Towards the cratonic area (cratonic domain),most lithostratigraphic units are authoctonous with vertical open folds and slaty cleavage. The general vergence of folds and thrust faults inboth domains is towards the east (São Francisco Craton). Shortening of cover across the fold belt is almost always balanced by coverbasementdetachments, fold-and-thrust structures and also by NE or NW trending wrench faults. The style of deformation variesconsiderably across strike due to crustal level. Typical thin-skinned fault-fold morphology in external domain gives rise downwards to morepervasive wide zones of ductile deformation at high metamorphic grades (thick-skinned structures) in the internal domain. The Southernpart of the Brasilia belt has a more complex deformational history than the northern one. This is probably due to structural overprintcaused by a diachronic collision. The Pirineus Inflection, where local vergence is towards the South, may represent the interference zonebetween the the two parts.Keywords: Neoproterozoic Brasília fold-and-thrust belt; structural style; Geodinamic evolution.


2020 ◽  
Vol 141 ◽  
pp. 104206
Author(s):  
Mjahid Zebari ◽  
Philipp Balling ◽  
Christoph Grützner ◽  
Payman Navabpour ◽  
Jan Witte ◽  
...  

2020 ◽  
Author(s):  
Christelle Guilbaud ◽  
Martine Simoes ◽  
Laurie Barrier ◽  
Jérôme Van der Woerd ◽  
Guillaume Baby ◽  
...  

<p>The Western Kunlun Range is a mountain range located at the northwestern boundary of the Tibetan Plateau, facing the Tarim Basin. Our previous combined structural and morphological investigations of the mountain front, nearby the city of Pishan where a Mw 6.4 earthquake occurred in 2015, revealed the existence of a duplex uplifting Cenozoic strata, in which only the most frontal blind ramp is presently active and slips at a probable rate of 2 to 2.5 mm/yr. Located ~100 km further east along the mountain front, the Hotan anticline seems to present a different structure from surface geology, as older strata from Mesozoic and Paleozoic outcrop. Additionally, some authors proposed that the deformation would be here accommodated by a large blind basement thrust sheet, in clear contrast with the duplexes documented further west.</p><p>To further document potential lateral variations in the structural style and how they may affect the kinematics of active deformation along the mountain front of the Western Kunlun, we carry out a structural and morphological analysis of the Hotan anticline. We build structural cross-sections based on seismic reflection profiles, and calculate the incremental uplift recorded by dated fluvial terraces to quantify shortening rates over the last ~300 kyr. Our analysis reveals that a duplex structure, located below the basement thrust sheet, presently accommodates active deformation at a rate of 0.5 to 2.5 mm/yr, with a preferred rate of ~1.6 to 2.3 mm/yr. In more detail, uplifted terraces reveal that all ramps of the duplex are active in the case of the Hotan anticline, while only the most frontal ramp is documented as active in the case of the Pishan anticline further west. These results indicate that the style and rate of active shortening are rather homogeneous all along the mountain front, in contrast with the first impression provided by surface geology. Moreover, the discrepancy between surface geology and active morphology reveals progressive structural changes over geological times, from a blind basement ramp to duplexes. However, in the details, active deformation still remains segmented as its partitioning on the various ramps of the duplexes is variable along strike.</p>


2013 ◽  
Vol 377 (1) ◽  
pp. 141-158 ◽  
Author(s):  
Julien Babault ◽  
Antonio Teixell ◽  
Lucía Struth ◽  
Jean Van Den Driessche ◽  
María Luisa Arboleya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document