Develop a reduced-complexity model – SCM4OPT v3.0 for integrated assessment-optimization

Author(s):  
Xuanming Su

<p>The Simple Climate Model for Optimization version 2.0 (SCM4OPT v2.0) is one of the contributors to the Reduced Complexity Model Intercomparison Project Phase 2 (RCMIP2). However, low effective radiative forcing is emulated in SCM4OPT v2.0, which is driven by the strong negative aerosol effective radiative forcing and considered to be an outlier compared to other models. In addition, the carbon cycles and climate system in SCM4OPT v2.0 are calibrated based on the outputs from Coupled Model Intercomparison Project Phase 5 (CMIP5), which cannot reflect the latest Earth system model results. In this study, we update the reduced-complexity model to SCM4OPT v3.0. First, we re-calibrate the carbon cycles, including land carbon-cycle and ocean carbon-cycle, and the climate system according to 32 coupled atmosphere-ocean general circulation models (AOGCMs) with selected experimental outputs in the latest CMIP6; Second, we fix the aerosol forcing by introducing a constrain in the light of the IPCC AR5 aerosol forcing. We retain the lightweight and efficient nature of this model, in order to make it suitable to be involved in a large-scale optimization process. Using SCM4OPT v3.0, we produce a new set of scenario simulations by using the dataset of harmonized emissions used in CMIP6 and compare with other reduced-complexity models. SCM4OPT v3.0 is expected to simulate climate-related uncertainties regarding the latest understanding of climate change.</p>

2020 ◽  
Vol 20 (16) ◽  
pp. 9591-9618 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
William Collins ◽  
...  

Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.


2018 ◽  
Vol 11 (7) ◽  
pp. 2581-2608 ◽  
Author(s):  
Claudia Timmreck ◽  
Graham W. Mann ◽  
Valentina Aquila ◽  
Rene Hommel ◽  
Lindsay A. Lee ◽  
...  

Abstract. The Stratospheric Sulfur and its Role in Climate (SSiRC) Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulfur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA-MIP is to constrain and improve interactive stratospheric aerosol models and reduce uncertainties in the stratospheric aerosol forcing by comparing results of standardized model experiments with a range of observations. In this paper we present four co-ordinated inter-model experiments designed to investigate key processes which influence the formation and temporal development of stratospheric aerosol in different time periods of the observational record. The Background (BG) experiment will focus on microphysics and transport processes under volcanically quiescent conditions, when the stratospheric aerosol is controlled by the transport of aerosols and their precursors from the troposphere to the stratosphere. The Transient Aerosol Record (TAR) experiment will explore the role of small- to moderate-magnitude volcanic eruptions, anthropogenic sulfur emissions, and transport processes over the period 1998–2012 and their role in the warming hiatus. Two further experiments will investigate the stratospheric sulfate aerosol evolution after major volcanic eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) experiment will focus on the uncertainty in the initial emission of recent large-magnitude volcanic eruptions, while the Pinatubo Emulation in Multiple models (PoEMS) experiment will provide a comprehensive uncertainty analysis of the radiative forcing from the 1991 Mt Pinatubo eruption.


2020 ◽  
Author(s):  
Zebedee R. J. Nicholls ◽  
Malte Meinshausen ◽  
Jared Lewis ◽  
Robert Gieseke ◽  
Dietmar Dommenget ◽  
...  

Abstract. Here we present results from the first phase of the Reduced Complexity Model Intercomparison Project (RCMIP). RCMIP is a systematic examination of reduced complexity climate models (RCMs), which are used to complement and extend the insights from more complex Earth System Models (ESMs), in particular those participating in the Sixth Coupled Model Intercomparison Project (CMIP6). In Phase 1 of RCMIP, with 14 participating models namely ACC2, AR5IR (2 and 3 box versions), CICERO-SCM, ESCIMO, FaIR, GIR, GREB, Hector, Held et al. two layer model, MAGICC, MCE, OSCAR and WASP, we highlight the structural differences across various RCMs and show that RCMs are capable of reproducing global-mean surface air temperature (GSAT) changes of ESMs and historical observations. We find that some RCMs are capable of emulating the GSAT response of CMIP6 models to within a root-mean square error of 0.2 °C (of the same order of magnitude as ESM internal variability) over a range of scenarios. Running the same model configurations for both RCP and SSP scenarios, we see that the SSPs exhibit higher effective radiative forcing throughout the second half of the 21st Century. Comparing our results to the difference between CMIP5 and CMIP6 output, we find that the change in scenario explains approximately 46 % of the increase in higher end projected warming between CMIP5 and CMIP6. This suggests that changes in ESMs from CMIP5 to CMIP6 explain the rest of the increase, hence the higher climate sensitivities of available CMIP6 models may not be having as large an impact on GSAT projections as first anticipated. A second phase of RCMIP will complement RCMIP Phase 1 by exploring probabilistic results and emulation in more depth to provide results available for the IPCC's Sixth Assessment Report author teams.


2016 ◽  
Author(s):  
Robert Pincus ◽  
Piers M. Forster ◽  
Bjorn Stevens

Abstract. The phrasing of the first of three questions motivating CMIP6 – "How does the Earth system respond to forcing?" – suggests that forcing is always well-known, but in fact forcing has historically been uncertain even in coordinated experiments such as CMIP. The Radiative Forcing Model Intercomparison Project endorsed by CMIP6 seeks to provide a foundation for answering the question for forcing and response through three related activities: (i) accurate characterization of the effective radiative forcing relative to a near pre-industrial baseline, and careful diagnosis of the components of this forcing; (ii) assessment of the absolute accuracy of clear-sky radiative transfer parameterizations against reference models on the global scales relevant for climate modeling; and (iii) identification of robust model responses to a tightly-specified aerosol radiative forcing from 1850 to present. Complete characterization of effective radiative forcing can be accomplished with 180 years (Tier 1) of atmosphere-only simulation using a sea-surface temperature and sea ice concentration climatology derived from the host model's pre-industrial control simulation. Assessment of parameterization error requires trivial amounts of computation but the development of small amounts of infrastructure: new, spectrally-detailed diagnostic output requested as two snapshots at present-day and preindustrial conditions, and results from the model's radiation code applied to specified atmospheric conditions. The search for robust responses to aerosol changes rely on the CMIP6 specification of anthropogenic aerosol properties; models using this specification can contribute to RFMIP with no additional simulation, while those using a full aerosol model are requested to perform at least one, and up to four, 165-year coupled ocean-atmosphere simulations at Tier 1.


2014 ◽  
Vol 27 (3) ◽  
pp. 1193-1209 ◽  
Author(s):  
Timothy Andrews

Abstract An atmospheric general circulation model is forced with observed monthly sea surface temperature and sea ice boundary conditions, as well as forcing agents that vary in time, for the period 1979–2008. The simulations are then repeated with various forcing agents, individually and in combination, fixed at preindustrial levels. The simple experimental design allows the diagnosis of the model’s global and regional time-varying effective radiative forcing from 1979 to 2008 relative to preindustrial levels. Furthermore the design can be used to (i) calculate the atmospheric model’s feedback/sensitivity parameters to observed changes in sea surface temperature and (ii) separate those aspects of climate change that are directly driven by the forcing from those driven by large-scale changes in sea surface temperature. It is shown that the atmospheric response to increased radiative forcing over the last 3 decades has halved the global precipitation response to surface warming. Trends in sea surface temperature and sea ice are found to contribute only ~60% of the global land, Northern Hemisphere, and summer land warming trends. Global effective radiative forcing is ~1.5 W m−2 in this model, with anthropogenic and natural contributions of ~1.3 and ~0.2 W m−2, respectively. Forcing increases by ~0.5 W m−2 decade−1 over the period 1979–2008 or ~0.4 W m−2 decade−1 if years strongly influenced by volcanic forcings—which are nonlinear with time—are excluded from the trend analysis. Aerosol forcing shows little global decadal trend due to offsetting regional trends whereby negative aerosol forcing weakens in Europe and North America but continues to strengthen in Southeast Asia.


2016 ◽  
Vol 9 (9) ◽  
pp. 3447-3460 ◽  
Author(s):  
Robert Pincus ◽  
Piers M. Forster ◽  
Bjorn Stevens

Abstract. The phrasing of the first of three questions motivating CMIP6 – “How does the Earth system respond to forcing?” – suggests that forcing is always well-known, yet the radiative forcing to which this question refers has historically been uncertain in coordinated experiments even as understanding of how best to infer radiative forcing has evolved. The Radiative Forcing Model Intercomparison Project (RFMIP) endorsed by CMIP6 seeks to provide a foundation for answering the question through three related activities: (i) accurate characterization of the effective radiative forcing relative to a near-preindustrial baseline and careful diagnosis of the components of this forcing; (ii) assessment of the absolute accuracy of clear-sky radiative transfer parameterizations against reference models on the global scales relevant for climate modeling; and (iii) identification of robust model responses to tightly specified aerosol radiative forcing from 1850 to present. Complete characterization of effective radiative forcing can be accomplished with 180 years (Tier 1) of atmosphere-only simulation using a sea-surface temperature and sea ice concentration climatology derived from the host model's preindustrial control simulation. Assessment of parameterization error requires trivial amounts of computation but the development of small amounts of infrastructure: new, spectrally detailed diagnostic output requested as two snapshots at present-day and preindustrial conditions, and results from the model's radiation code applied to specified atmospheric conditions. The search for robust responses to aerosol changes relies on the CMIP6 specification of anthropogenic aerosol properties; models using this specification can contribute to RFMIP with no additional simulation, while those using a full aerosol model are requested to perform at least one and up to four 165-year coupled ocean–atmosphere simulations at Tier 1.


2018 ◽  
Author(s):  
Claudia Timmreck ◽  
Graham W. Mann ◽  
Valentina Aquila ◽  
Rene Hommel ◽  
Lindsay A. Lee ◽  
...  

Abstract. The Stratospheric Sulfur and its Role in Climate (SSiRC) interactive stratospheric aerosol model intercomparison project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulphur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA-MIP is to constrain and improve interactive stratospheric aerosol models and reduce uncertainties in the stratospheric aerosol forcing by comparing results of standardized model experiments with a range of observations. In this paper we present 4 co-ordinated inter-model experiments designed to investigate key processes which influence the formation and temporal development of stratospheric aerosol in different time periods of the observational record. The Background (BG) experiment will focus on microphysics and transport processes under volcanically quiescent conditions, when the stratospheric aerosol is controlled by the transport of aerosols and their precursors from the troposphere to the stratosphere. The Transient Aerosol Record (TAR) experiment will explore the role of small- to moderate-magnitude volcanic eruptions, anthropogenic sulphur emissions and transport processes over the period 1998–2012 and their role in the warming hiatus. Two further experiments will investigate the stratospheric sulphate aerosol evolution after major volcanic eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) experiment will focus on the uncertainty in the initial emission of recent large-magnitude volcanic eruptions, while the Pinatubo Emulation in Multiple models (PoEMS) experiment will provide a comprehensive uncertainty analysis of the radiative forcing from the 1991 Mt. Pinatubo eruption.


2020 ◽  
Author(s):  
Christopher Smith ◽  
Ryan Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
Bill Collins ◽  
...  

<p>The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmsophere and surface, as emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and atmospheric adjustments in 13 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 1.97 (± 0.26) W m<sup>-2</sup>, comprised of 1.80 (± 0.11) W m<sup>-2</sup> from CO<sub>2</sub>, 1.07 (± 0.21) W m<sup>-2</sup> from other well-mixed greenhouse gases, -1.04 (± 0.23) W m<sup>-2</sup> from aerosols and -0.08 (± 0.14) W m<sup>-2</sup> from land use change. Quoted ranges are one standard deviation across model best estimates, and 90% confidence in the reported forcings, due to internal variability, is typically within 0.1 W m<sup>-2</sup>. The majority of the remaining 0.17 W m<sup>-2</sup> is likely to be from ozone. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the "traditional" stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total forcing. The spread of present-day aerosol forcing has narrowed compared to CMIP5 models to the range of -0.63 to -1.37 W m<sup>-2</sup>, with a less negative mean. The spread in CO<sub>2</sub> forcing has also narrowed in CMIP6 compared to CMIP5, which may be a consequence of improving radiative transfer parameterisations. We also find that present-day aerosol forcing is uncorrelated with equilibrium climate sensitivity. Therefore, there is no evidence to suggest that the higher climate sensitivity in many CMIP6 models is a consequence of stronger negative present-day aerosol forcing.</p>


2020 ◽  
Author(s):  
Prodromos Zanis ◽  
Dimitris Akritidis ◽  
Aristeidis K. Georgoulias ◽  
Robert J. Allen ◽  
Susanne E. Bauer ◽  
...  

<p>We present an analysis of the fast responses on pre-industrial climate due to present-day aerosols in a multi-model study based on Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth System Models (ESMs) and General Circulation Models (GCMs). The aforementioned simulations were implemented within the framework of the Aerosol Chemistry Model Intercomparison Project (AerChemMIP). All models carried out two sets of simulations; a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014. The perturbation by the present-day aerosols indicates negative top of the atmosphere (TOA) effective radiative forcing (ERF) values around the globe, especially over continental regions of the Northern Hemisphere in summer, with the largest negative values appearing over East Asia. Simulations in 3 models (CNRM-ESM2-1, MRI-ESM2-0 and NorESM2-LM) with individual perturbation experiments using present day SO<sub>2</sub>, BC and OC emissions show the dominating role of sulfates in all-aerosols ERF. In response to the pattern of all aerosols ERF, the fast temperature responses are characterised by cooling over the continental areas, especially in the Northern Hemisphere, with the largest cooling over East Asia and India and sulfate being the dominant aerosol surface temperature driver for present-day emissions. The largest fast precipitation responses are seen in the tropical belt regions, generally characterized by  a reduction over continental regions and a southward shift of the tropical rain belt. This is a characteristic and robust feature among most models in this study, associated with a southward shift of the Intertropical convergence zone (ITCZ) and a weakening of the monsoon systems around the globe (Asia, Africa and America) in response to hemispherically asymmetric cooling from a Northern Hemisphere aerosol perturbation. An interesting feature in aerosol induced circulation changes is a characteristic dipole pattern with intensification of the Icelandic Low and an anticyclonic anomaly over Southeastern Europe, inducing warm air advection towards the northern polar latitudes in winter.</p><p>This research was funded by the project "PANhellenic infrastructure for Atmospheric Composition and climatE change" (MIS 5021516) which is implemented under the Action "Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).</p>


2020 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
William Collins ◽  
...  

Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 13 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 1.97 (± 0.26) W m−2, comprised of 1.80 (± 0.11) W m−2 from CO2, 1.07 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.04 (± 0.23) W m−2 from aerosols and −0.08 (± 0.14) W m−2 from land use change. Quoted uncertainties are one standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.17 W m−2 is likely to be from ozone. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the traditional stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4 × CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with equilibrium climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing.


Sign in / Sign up

Export Citation Format

Share Document