Supporting disaster risk reduction with satellite Earth Observation: Landslide hazard assessment for the Chin road corridor, Myanmar 

Author(s):  
Jan Kolomazník ◽  
Ivana Hlavacova ◽  
Matthias Schloegl

<p>EO4SD (Earth Observation for Sustainable Development) initiative of the European Space Agency aims at facilitating the uptake and integration of satellite information products and services into development activities of international financial institutions and their partners in targeted countries. Its disaster risk reduction (DRR) cluster plays a crucial role when it comes to impacts of natural hazards on societies.</p><p>We present a recent service established within the EO4SD-DRR cluster, which aimed at providing evidence-based support to the design of reconstruction works on the road corridor in mountainous and landslide prone terrain between towns of Kalay and Hakha in Chin state, Myanmar. The whole service is constituted by an ensemble of analytical products and comprises four major components: (1) establishment of a landslide inventory, (2) derivation of landslide susceptibility, (3) slope instability analysis, and (4) overall landslide exposure assessment.</p><p>First, a landslide inventory of historic landslide events was derived from optical satellite imagery. Second, by linking the landslide inventory with geomorphological features derived from a digital elevation model as well as geological and land cover data, a comprehensive landslide susceptibility map was derived. This was accomplished by employing robust machine learning ensemble methods, inherently tackling the problem of class imbalance, and yielding not only the estimated susceptibility, but also its corresponding uncertainty. Third, a slope instability assessment was obtained via multi-temporal InSAR. Interferometric analysis provided estimates of terrain displacement velocities from Sentinel-1 data from ascending and descending trajectories and by leveraging both persistent scatterer and the small baselines methods. As the atmospheric phase screen could not be reliably estimated  the area of interest had to be split into several sub-areas processed independently. Due to large amount of points with non-linear displacements and varying noise levels, InSAR measurement points were filtered using both coherence threshold and features representing length of reliable period derived by segmentation of displacement time series. Displacement velocities were converted from satellite line-of-sight to direction of maximum slope gradient and point attributes were supplemented with metadata indicating detected points’ reliability based on combination of coherence and directional sensitivity. Finally, exposure of road segments to landslide hazard represented by susceptibility and estimated slope instabilities was quantified and presented in dedicated web application to allow intuitive identification of hazard hot-spots.</p><p>Despite several methodological challenges products demonstrate robustness and utility of Earth Observation technology to address landslide hazard screening and to support targeting and protecting investments into landslide mitigation measures along the road corridor.</p>

Author(s):  
Alberto Lorenzo-Alonso ◽  
Marino Palacios ◽  
Ángel Utanda

Disaster Risk Reduction (DRR) is a high priority on the agenda of main stakeholders involved in sustainable development and Earth Observation (EO) can provide useful, timely and economical information in this context. This short communication outlines the European Space Agency’s (ESA) specific initiative to promote the use and uptake of satellite data in the global development community: ‘Earth Observation for Sustainable Development (EO4SD)’. One activity area under EO4SD is devoted to Disaster Risk Reduction: EO4SD DRR. Within this project, a team of European companies and institutions are tasked to develop EO services for supporting the implementation of DRR in International Financial Institutions’ (IFI) projects. Integration of satellite-borne data and ancillary data to generate insight and actionable information is thereby considered a key factor for improved decision making. To understand and fully account for the essential user requirements (IFI & Client States), engagement with technical leaders is crucial. Fit-for-purpose use of data and comprehensive capacity building eventually ensure scalability and long-term transferability. Future perspectives of EO4SD and DRR regarding mainstreaming are also highlighted.


2018 ◽  
Vol 169 ◽  
pp. 01044 ◽  
Author(s):  
Hung-Wen Chang ◽  
Wei-I Lee

In this study, we performed routes network transport and emergency shelters capacity rate analyses to determine the accessibility and efficacy of urban patterns, and established a quantitative method for supplying priorities for actions of "Sendai Framework for Disaster Risk Reduction 2015-2030". By comparing two case studies, we used Space Syntax to develop two important indicators, Rn and CR, to present geographic information and hazard risk in a physical environment. This research also found potential function of Rn and decoded some patterns for urban planners or decision makers as follows:The most efficient configuration of the road network was not in the old areas of these two case studies because the several turns decreased the connectivity of the networks. And the CR indicator shown other findings about the quality of public facilities and services as follows:The service capacity of the emergency shelters was surveyed to indicate a higher correlation of residents population and preparedness security for disaster management. Therefore, with finding some risks that had not been encountered before, we addressed this proposed method is feasible and reliable to enhance the disaster preparedness for action regarding the 4th priority of “Sendai Framework for Disaster Risk Reduction 2015-2030”.


2018 ◽  
Vol 2 (1) ◽  
pp. 36
Author(s):  
Heru Sri Naryanto

ABSTRACTBanggai Laut District which consists of islands has many threats to natural disaster, one of them is landslide hazard. The landslides hazard in Banggai Laut District is formed due to morphology which mostly in the form of wavy morphology up to the hills. The thematic map data used in landslide hazard map analysis is the official data held by the Banggai Laut District Government. The weighting and rating system is carried out on several parameters: geology (15%), slope (40%), land cover (25%) and rainfall (20%). Data from these parameters are overlaid with geographic information system (GIS) to obtain the classification of landslide hazard maps, ie: high landslide hazard zones, moderate landslide hazard zones and low landslide hazard zones. High landslide hazard zones are evenly spread over 4 large islands, namely Banggai Island, Bangkurung Island, Labobo Island and Bokan Kepulauan Islands. The potential for high landslide hazard will become bigger with added disturbance of human activities. To smooth the development process in integrated Banggai Laut District, landslide hazard maps and other hazard maps are very necessary. The limited availability of data and information on the disaster in Banggai Laut District, the creation of landslide hazard map is very important as one of the parts to complement the data. With the establishment of Regional Disaster Management Agency (BPBD) of Banggai Laut District, disaster risk reduction is expected to be implemented more focused, integrated, comprehensive and well coordinated with related institutions. Keywords: Landslides, Hazard Maps, Banggai Laut, Disaster Risk Reduction, Focused and Integrated Development.   ABSTRAKKabupaten Banggai Laut yang terdiri dari kepulauan mempunyai banyak ancaman terhadap bencana alam, salah satunya adalah bencana tanah longsor (gerakan tanah). Bahaya tanah longsor di Kabupaten Banggai Laut terbentuk akibat morfofologi yang sebagian besar berupa morfologi bergelombang sampai perbukitan. Data peta tematik yang digunakan dalam analisis peta bahaya tanah longsor adalah data resmi yang dimiliki oleh Pemerintah Kabupaten Banggai Laut. Sistem pembobotan dan penilaian dilakukan pada beberapa parameter yaitu: geologi (15%), lereng (40%), tutupan lahan (25%) dan curah hujan (20%). Data dari parameter-parameter tersebut dioverlay dengan sistem informasi geografi untuk mendapatkan klasifikasi peta bahaya tanah longsor, yaitu: zona bahaya tanah longsor tinggi, zona bahaya tanah longsor sedang dan zona bahaya tanah longsor rendah. Zona bahaya tanah longsor tinggi merata tersebar di 4 pulau besar, yaitu Pulau Banggai, Pulau Bangkurung, Pulau Labobo dan Bokan Kepulauan. Potensi bahaya longsor tinggi tersebut akan menjadi semakin besar dengan tambahan gangguan aktivitas manusia. Untuk kelancaran proses pembangunan secara terpadu di Kabupaten Banggai Laut, peta bahaya longsor dan peta-peta bahaya lainnya sangat diperlukan. Ketersediaan data dan informasi tentang kebencanaan yang masih terbatas di Kabupaten Banggai Laut, maka pembuatan peta kawasan rawan bahaya tanah longsor sangat penting sebagai salah satu bagian untuk melengkapi data tersebut. Dengan terbentuknya BPBD Kabupaten Banggai Laut, maka pengurangan risiko bencana diharapkan dapat dilaksanakan dengan lebih terarah, terpadu, menyeluruh serta terkoordinasi dengan baik dengan instansi terkait. Kata kunci: Tanah Longsor, Peta Bahaya, Banggai Laut, Pengurangan Risiko Bencana, Pembangunan Terarah dan Terpadu.


2018 ◽  
Vol 75 ◽  
pp. 77-91 ◽  
Author(s):  
K. Mertens ◽  
L. Jacobs ◽  
J. Maes ◽  
J. Poesen ◽  
M. Kervyn ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 1378 ◽  
Author(s):  
Daniele Ehrlich ◽  
Michele Melchiorri ◽  
Aneta Florczyk ◽  
Martino Pesaresi ◽  
Thomas Kemper ◽  
...  

Exposure is reported to be the biggest determinant of disaster risk, it is continuously growing and by monitoring and understanding its variations over time it is possible to address disaster risk reduction, also at the global level. This work uses Earth observation image archives to derive information on human settlements that are used to quantify exposure to five natural hazards. This paper first summarizes the procedure used within the global human settlement layer (GHSL) project to extract global built-up area from 40 year deep Landsat image archive and the procedure to derive global population density by disaggregating population census data over built-up area. Then it combines the global built-up area and the global population density data with five global hazard maps to produce global layers of built-up area and population exposure to each single hazard for the epochs 1975, 1990, 2000, and 2015 to assess changes in exposure to each hazard over 40 years. Results show that more than 35% of the global population in 2015 was potentially exposed to earthquakes (with a return period of 475 years); one billion people are potentially exposed to floods (with a return period of 100 years). In light of the expansion of settlements over time and the changing nature of meteorological and climatological hazards, a repeated acquisition of human settlement information through remote sensing and other data sources is required to update exposure and risk maps, and to better understand disaster risk and define appropriate disaster risk reduction strategies as well as risk management practices. Regular updates and refined spatial information on human settlements are foreseen in the near future with the Copernicus Sentinel Earth observation constellation that will measure the evolving nature of exposure to hazards. These improvements will contribute to more detailed and data-driven understanding of disaster risk as advocated by the Sendai Framework for Disaster Risk Reduction.


Author(s):  
I. Petiteville ◽  
C. Ishida ◽  
J. Danzeglocke ◽  
A. Eddy ◽  
F. Gaetani ◽  
...  

Agencies from CEOS (Committee on Earth Observation Satellites) have traditionally focused their efforts on the response phase. Rapid urbanization and increased severity of weather events has led to growing economic and human losses from disasters, requiring international organisations to act now in all disaster risk management (DRM) phases, especially through improved disaster risk reduction policies and programmes. As part of this effort, CEOS agencies have initiated a series of actions aimed at fostering the use of Earth observation (EO) data to support disaster risk reduction and at raising the awareness of policy and decision-makers and major stakeholders of the benefits of using satellite EO in all phases of DRM. <br><br> CEOS is developing a long-term vision for sustainable application of satellite EO to all phases of DRM. CEOS is collaborating with regional representatives of the DRM user community, on a multi-hazard project involving three thematic pilots (floods, seismic hazards and volcanoes) and a Recovery Observatory that supports resilient recovery from one major disaster. These pilot activities are meant as trail blazers that demonstrate the potential offered by satellite EO for comprehensive DRM. <br><br> In the framework of the 2015 3<sup>rd</sup> World Conference on Disaster Risk Reduction (WCDRR), the CEOS space agencies intend to partner with major stakeholders, including UN organizations, the Group on Earth Observations (GEO), international relief agencies, leading development banks, and leading regional DRM organisations, to define and implement a 15-year plan of actions (2015- 2030) that responds to high-level Post-2015 Framework for Disaster Risk Reduction priorities. This plan of action will take into account lessons learned from the CEOS pilot activities.


Sign in / Sign up

Export Citation Format

Share Document