On the constitutive equations for coupled chemical reaction and deformation of porous rocks

Author(s):  
Yury Podladchikov ◽  
Viktoriya Yarushina ◽  
Benjamin Malvoisin

<p>Deformation, chemical reactions, and fluid flow in the geological materials are coupled processes. While some reactions are thought to be a consequence of fluid assisted dissolution on the stressed mineral surfaces and precipitation on the free surface, other reactions are caused by mineral replacement wherein a less stable mineral phase is replaced by a more stable phase, involving a change in solid volume and build-up of stresses on grain contacts, also known as a force of crystallization. Most of the existing models of chemical reactions coupled with fluid transport either assume dissolution-precipitation process or mineral growth in rocks. However, dissolution-precipitation models used together with fluid flow modelling predict a very limited extent of reaction hampered by pore clogging and blocking of reactive surfaces, which will stop reaction progress due to the limited supply of fluid to reactive surfaces. Yet, field observations report that natural rocks can undergo 100% hydration/carbonation. Mineral growth models, on the other hand, preserve solid volume but do not consider its feedback on porosity evolution. In addition, they predict the unrealistically high force of crystallization on the order of several GPa that must be developed in minerals during the reaction. Here, using a combination of effective media theory and irreversible thermodynamics approaches, we propose a new model for reaction-driven mineral expansion, which preserves porosity and limits unrealistically high build-up of the force of crystallization by allowing inelastic failure processes at the pore scale. To fully account for the coupling between reaction, deformation, and fluid flow we derive macroscopic poroviscoelastic stress-strain constitute laws, that account for chemical alteration and viscoleastic deformation of porous rocks. These constitutive equations are then used to simulate the reactive transport in porous rocks.</p>

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1957 ◽  
Author(s):  
Yuan ◽  
Wei ◽  
Zhang ◽  
Qin

Water–rock interactions can alter rock properties through chemical reactions during subsurface transport processes like geological CO2 sequestration (GCS), matrix acidizing, and waterflooding in carbonate formations. Dynamic changes in rock properties cause a failure of waterflooding and GCS and could also dramatically affect the efficiency of the acidizing. Efficient numerical simulations are thus essential to the optimized design of those subsurface processes. In this paper, we develop a three-dimensional (3D) numerical model for simulating the coupled processes of fluid flow and chemical reactions in fractured carbonate formations. In the proposed model, we employ the Stokes–Brinkman equation for momentum balance, which is a single-domain formulation for modeling fluid flow in fractured porous media. We then couple the Stokes–Brinkman equation with reactive-transport equations. The model can be formulated to describe linear as well as radial flow. We employ a decoupling procedure that sequentially solves the Stokes–Brinkman equation and the reactive transport equations. Numerical experiments show that the proposed method can model the coupled processes of fluid flow, solute transport, chemical reactions, and alterations of rock properties in both linear and radial flow scenarios. The rock heterogeneity and the mineral volume fractions are two important factors that significantly affect the structure of conductive channels.


2015 ◽  
Vol 8 (10) ◽  
pp. 3333-3348 ◽  
Author(s):  
W. He ◽  
C. Beyer ◽  
J. H. Fleckenstein ◽  
E. Jang ◽  
O. Kolditz ◽  
...  

Abstract. The open-source scientific software packages OpenGeoSys and IPhreeqc have been coupled to set up and simulate thermo-hydro-mechanical-chemical coupled processes with simultaneous consideration of aqueous geochemical reactions faster and easier on high-performance computers. In combination with the elaborated and extendable chemical database of IPhreeqc, it will be possible to set up a wide range of multiphysics problems with numerous chemical reactions that are known to influence water quality in porous and fractured media. A flexible parallelization scheme using MPI (Message Passing Interface) grouping techniques has been implemented, which allows an optimized allocation of computer resources for the node-wise calculation of chemical reactions on the one hand and the underlying processes such as for groundwater flow or solute transport on the other. This technical paper presents the implementation, verification, and parallelization scheme of the coupling interface, and discusses its performance and precision.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 802 ◽  
Author(s):  
Sergey Serdyukov

In this work, we consider extended irreversible thermodynamics in assuming that the entropy density is a function of both common thermodynamic variables and their higher-order time derivatives. An expression for entropy production, and the linear phenomenological equations describing diffusion and chemical reactions, are found in the context of this approach. Solutions of the sets of linear equations with respect to fluxes and their higher-order time derivatives allow the coefficients of diffusion and reaction rate constants to be established as functions of size of the nanosystems in which these reactions occur. The Maxwell-Cattaneo and Jeffreys constitutive equations, as well as the higher-order constitutive equations, which describe the processes in reaction-diffusion systems, are obtained.


2021 ◽  
Author(s):  
Lyudmila Khakimova ◽  
Nikolai Belov ◽  
Artyom Myasnikov ◽  
Anatoly Vershinin ◽  
Kirill Krapivin ◽  
...  

<p>This work is devoted to developing the self-consistent thermo-hydro-chemo-mechanical reactive transport model to predict and describe natural and industrial petroleum processes at different scales.</p><p>We develop a version of the front tracking approach for multicomponent multiphase flow in order to treat spontaneous splitting of discontinuities. We revisit the solution for the Riemann problem and systematically classify all possible configurations as functions of initial concentrations on both sides of the discontinuity. We validate the algorithm against finite volume high-resolution technics and high-order spectral finite elements.</p><p>To calculate the parameters of phase equilibria, we utilize an approach based on the direct minimization of the Gibbs energy of a multicomponent mixture. This method ensures the consistency of the thermodynamic lookup tables. The core of the algorithm is the non-linear free-energy constrained minimization problem, formulated in the form of a linear programming problem by discretization in compositional space.</p><p>The impact of the complex rheological response of porous matrix on the morphology of fluid flow and shear deformation localization is considered. Channeling of porosity waves and shear bands morphology and their orientation is investigated for viscoelastoplastic both shear and bulk rheologies.</p>


Sign in / Sign up

Export Citation Format

Share Document