Assessment of spatial and temporal variations in soil moisture from satellite observations and ground-based measurements and their relationship with plant cover

Author(s):  
Boguslaw Usowicz ◽  
Jerzy Lipiec

<p>The dynamic processes of mass and energy exchange on the soil surface are mainly influenced by plant cover, soil physical quantities and meteorological conditions. The aims of the research were: (a) to identify spatial and temporal changes in soil moisture (SM) obtained from satellite observations and ground measurements at the regional scale and (b) to determine the temporal variability of soil moisture in the soil profile with and bare soil (reference). The study area included 9 sites in the eastern part of Poland. Agro-meteorological stations in each site allowed monitoring soil moisture (SM). Satellite SM data (time series) for the years 2010–2016 (every week) obtained from the Soil Moisture and Ocean Salinity satellite (SMOS L2 v. 650 datasets) were gridded using the discrete global grid (DGG) with the nodes spaced at 15 km. Seven DGG pixels per each site were considered in a way that the central one (named S0) containing the agrometeorological station was bordered with 6 others (S1÷S6). The measurements of SM were performed at depths of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.8 m once a day in April-July in plots of spring barley, rye and bare soil. The temporal dependence of the SMOS surface soil moisture was observed in S0÷S6 with the radius of autocorrelation time from 8.1 to 25.2 weeks. The smallest autocorrelation time (3 weeks ) was found in pixels with dominance of arable lands and the largest one - with dominance of wetlands (16.8 weeks) and forests (from 12 to 15.6 weeks). The autocorrelation times in S0 were much greater for ground-based SM data (11.1 to 43.1 weeks) than those for SMOS SM data. The autocorrelations enabled satisfactory predicting changes in SM forwards and backwards using the kriging method and filling gaps in the SM time series. As to ground measurements the highest autocorrelation times were in the soil below the plough layer under rye (170 days) and the lowest in the surface soil under barley and bare soil (18 and 19 days). In the plot of rye with the highest soil density the autocorrelation radius was over 1.5 months. The fractal dimensions (D0) indicated a large randomness of the surface SMOS SM distribution (D0 1.86–1.95) and the ground SM measurements (D0 1.82–1.92). The D0 values clearly decreased with the depth (from 1.7 to 1.15) in plant-covered soil while in the bare soil they did not change much throughout the profile (D0 1.7–1.8). The D0 values indicated that the temporal distribution of SM in the soil profile was more random in bare than plant-covered soil. The results help to understanding autocorrelation time ranges in surface and deeper soil and spatial changes in soil moisture depending on plant cover.</p><p>Acknowledgements. Research was conducted under the project "Water in soil – satellite monitoring and improving the retention using biochar" no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of “Environment, agriculture and forestry" – BIOSTRATEG strategic R&D programme.</p>

2021 ◽  
Author(s):  
Anna Balenzano ◽  
Giuseppe Satalino ◽  
Francesco Lovergine ◽  
Davide Palmisano ◽  
Francesco Mattia ◽  
...  

<p>One of the limitations of presently available Synthetic Aperture Radar (SAR) surface soil moisture (SSM) products is their moderated temporal resolution (e.g., 3-4 days) that is non optimal for several applications, as most user requirements point to a temporal resolution of 1-2 days or less. A possible path to tackle this issue is to coordinate multi-mission SAR acquisitions with a view to the future Copernicus Sentinel-1 (C&D and Next Generation) and L-band Radar Observation System for Europe (ROSE-L).</p><p>In this respect, the recent agreement between the Japanese (JAXA) and European (ESA) Space Agencies on the use of SAR Satellites in Earth Science and Applications provides a framework to develop and validate multi-frequency and multi-platform SAR SSM products. In 2019 and 2020, to support insights on the interoperability between C- and L-band SAR observations for SSM retrieval, Sentinel-1 and ALOS-2 systematic acquisitions over the TERENO (Terrestrial Environmental Observatories) Selhausen (Germany) and Apulian Tavoliere (Italy) cal/val sites were gathered. Both sites are well documented and equipped with hydrologic networks.</p><p>The objective of this study is to investigate the integration of multi-frequency SAR measurements for a consistent and harmonized SSM retrieval throughout the error characterization of a combined C- and L-band SSM product. To this scope, time series of Sentinel-1 IW and ALOS-2 FBD data acquired over the two sites will be analysed. The short time change detection (STCD) algorithm, developed, implemented and recently assessed on Sentinel-1 data [e.g., Balenzano et al., 2020; Mattia et al., 2020], will be tailored to the ALOS-2 data. Then, the time series of SAR SSM maps from each SAR system will be derived separately and aggregated in an interleaved SSM product. Furthermore, it will be compared against in situ SSM data systematically acquired by the ground stations deployed at both sites. The study will assess the interleaved SSM product and evaluate the homogeneous quality of C- and L-band SAR SSM maps.</p><p> </p><p> </p><p>References</p><p>Balenzano. A., et al., “Sentinel-1 soil moisture at 1km resolution: a validation study”, submitted to Remote Sensing of Environment (2020).</p><p>Mattia, F., A. Balenzano, G. Satalino, F. Lovergine, A. Loew, et al., “ESA SEOM Land project on Exploitation of Sentinel-1 for Surface Soil Moisture Retrieval at High Resolution,” final report, contract number 4000118762/16/I-NB, 2020.</p>


2014 ◽  
Vol 13 (1) ◽  
pp. vzj2013.04.0075 ◽  
Author(s):  
M. Dimitrov ◽  
J. Vanderborght ◽  
K. G. Kostov ◽  
K. Z. Jadoon ◽  
L. Weihermüller ◽  
...  

2020 ◽  
Vol 10 (16) ◽  
pp. 5540 ◽  
Author(s):  
Maria Casamitjana ◽  
Maria C. Torres-Madroñero ◽  
Jaime Bernal-Riobo ◽  
Diego Varga

Surface soil moisture is an important hydrological parameter in agricultural areas. Periodic measurements in tropical mountain environments are poorly representative of larger areas, while satellite resolution is too coarse to be effective in these topographically varied landscapes, making spatial resolution an important parameter to consider. The Las Palmas catchment area near Medellin in Colombia is a vital water reservoir that stores considerable amounts of water in its andosol. In this tropical Andean setting, we use an unmanned aerial vehicle (UAV) with multispectral (visible, near infrared) sensors to determine the correlation of three agricultural land uses (potatoes, bare soil, and pasture) with surface soil moisture. Four vegetation indices (the perpendicular drought index, PDI; the normalized difference vegetation index, NDVI; the normalized difference water index, NDWI, and the soil-adjusted vegetation index, SAVI) were applied to UAV imagery and a 3 m resolution to estimate surface soil moisture through calibration with in situ field measurements. The results showed that on bare soil, the indices that best fit the soil moisture results are NDVI, NDWI and PDI on a detailed scale, whereas on potatoes crops, the NDWI is the index that correlates significantly with soil moisture, irrespective of the scale. Multispectral images and vegetation indices provide good soil moisture understanding in tropical mountain environments, with 3 m remote sensing images which are shown to be a good alternative to soil moisture analysis on pastures using the NDVI and UAV images for bare soil and potatoes.


2019 ◽  
Vol 20 (6) ◽  
pp. 1165-1182 ◽  
Author(s):  
Kaighin A. McColl ◽  
Qing He ◽  
Hui Lu ◽  
Dara Entekhabi

Abstract Land–atmosphere feedbacks occurring on daily to weekly time scales can magnify the intensity and duration of extreme weather events, such as droughts, heat waves, and convective storms. For such feedbacks to occur, the coupled land–atmosphere system must exhibit sufficient memory of soil moisture anomalies associated with the extreme event. The soil moisture autocorrelation e-folding time scale has been used previously to estimate soil moisture memory. However, the theoretical basis for this metric (i.e., that the land water budget is reasonably approximated by a red noise process) does not apply at finer spatial and temporal resolutions relevant to modern satellite observations and models. In this study, two memory time scale metrics are introduced that are relevant to modern satellite observations and models: the “long-term memory” τL and the “short-term memory” τS. Short- and long-term surface soil moisture (SSM) memory time scales are spatially anticorrelated at global scales in both a model and satellite observations, suggesting hot spots of land–atmosphere coupling will be located in different regions, depending on the time scale of the feedback. Furthermore, the spatial anticorrelation between τS and τL demonstrates the importance of characterizing these memory time scales separately, rather than mixing them as in previous studies.


2020 ◽  
Author(s):  
Adrian Wicki ◽  
Manfred Stähli

<p>In mountainous regions, rainfall-triggered landslides pose a serious risk to people and infrastructure, particularly due to the short time interval between activation and failure and their widespread occurrence. Landslide early warning systems (LEWS) have demonstrated to be a valuable tool to inform decision makers about the imminent landslide danger and to move people or goods at risk to safety. While most operational LEWS are based on empirically derived rainfall exceedance thresholds, recent studies have demonstrated an improvement of the forecast quality after the inclusion of in-situ soil moisture measurements.</p><p>The use of in-situ soil moisture sensors bears specific limitations, such as the sensitivity to local conditions, the disturbance of the soil profile during installation, and potential data quality issues and inhomogeneity of long-term measurements. Further, the installation and operation of monitoring networks is laborious and costly. In this respect, making use of modelled soil moisture could efficiently increase information density, and it would further allow to forecast soil moisture dynamics. On the other hand, numerical simulations are restricted by assumptions and simplifications related to the soil hydraulic properties and the water transfer in the soil profile. Ultimately, the question arises how reliable and representative landslide early warnings based on soil moisture simulations are compared to warnings based on measurements.</p><p>To answer this, we applied a state-of-the-art one-dimensional heat and mass transfer model (CoupModel, Jansson 2012) to generate time series of soil water content at 35 sites in Switzerland. The same sites and time period (2008-2018) were used in a previous study to compare the temporal variability of in-situ measured soil moisture to the regional landslide activity (currently under review in <em>Landslides</em>). The same statistical framework for soil moisture dynamics analysis, landslide probability modelling and landslide early warning performance analysis was applied to the modelled and the measured soil moisture time series. This allowed to directly compare the forecast skill of modelling-based with measurements-based landslide early warning.</p><p>In this contribution, we will highlight three steps of model applications: First, a straight-forward simulation to all 35 sites without site-specific calibration and using reference soil layering only, to assess the forecast skill as if no prior measurements were available. Second, a model simulation after calibration at each site using the existing soil moisture time series and information on the soil texture to assess the benefit of a thorough calibration process on the forecast skill. Finally, an application of the model to additional sites in Switzerland where no soil moisture measurements are available to assess the effect of increasing the soil moisture information density on the overall forecast skill.</p>


2020 ◽  
Author(s):  
Sarah Schönbrodt-Stitt ◽  
Paolo Nasta ◽  
Nima Ahmadian ◽  
Markus Kurtenbach ◽  
Christopher Conrad ◽  
...  

<p>Mapping near-surface soil moisture (<em>θ</em>) is of tremendous relevance for a broad range of environment-related disciplines and meteorological, ecological, hydrological and agricultural applications. Globally available products offer the opportunity to address <em>θ</em> in large-scale modelling with coarse spatial resolution such as at the landscape level. However, <em>θ</em> estimation at higher spatial resolution is of vital importance for many small-scale applications. Therefore, we focus our study on a small-scale catchment (MFC2) belonging to the “Alento” hydrological observatory, located in southern Italy (Campania Region). The goal of this study is to develop new machine-learning approaches to estimate high grid-resolution (about 17 m cell size) <em>θ</em> maps from mainly backscatter measurements retrieved from C-band Synthetic Aperture Radar (SAR) based on Sentinel-1 (S1) images and from gridded terrain attributes. Thus, a workflow comprising a total of 48 SAR-based <em>θ</em> patterns estimated for 24 satellite overpass dates (revisit time of 6 days) each with ascendant and descendent orbits will be presented. To enable for the mapping, SAR-based <em>θ</em> data was calibrated with in-situ measurements carried out with a portable device during eight measurement campaigns at time of satellite overpasses (four overpass days in total with each ascendant and descendent satellite overpasses per day in November 2018). After the calibration procedure, data validation was executed from November 10, 2018 till March 28, 2019 by using two stationary sensors monitoring <em>θ</em> at high-temporal (1-min recording time). The specific sensor locations reflected two contrasting field conditions, one bare soil plot (frequently kept clear, without disturbance of vegetation cover) and one non-bare soil plot (real-world condition). Point-scale ground observations of <em>θ</em> were compared to pixel-scale (17 m × 17 m), SAR-based <em>θ</em> estimated for those pixels corresponding to the specific positions of the stationary sensors. Mapping performance was estimated through the root mean squared error (RMSE). For a short-term time series of <em>θ</em> (Nov 2018) integrating 136 in situ, sensor-based <em>θ</em> (<em>θ</em><sub>insitu</sub>) and 74 gravimetric-based <em>θ</em> (<em>θ</em><sub>gravimetric</sub>) measurements during a total of eight S1 overpasses, mapping performance already proved to be satisfactory with RMSE=0.039 m³m<sup>-</sup>³ and R²=0.92, respectively with RMSE=0.041 m³m<sup>-</sup>³ and R²=0.91. First results further reveal that estimated satellite-based <em>θ</em> patterns respond to the evolution of rainfall. With our workflow developed and results, we intend to contribute to improved environmental risk assessment by assimilating the results into hydrological models (e.g., HydroGeoSphere), and to support future studies on combined ground-based and SAR-based <em>θ</em> retrieval for forested land (future missions operating at larger wavelengths e.g. NISARL-band, Biomass P-band sensors).</p>


2017 ◽  
Vol 14 (8) ◽  
pp. 1328-1332 ◽  
Author(s):  
Lian He ◽  
Qiming Qin ◽  
Rocco Panciera ◽  
Mihai Tanase ◽  
Jeffrey P. Walker ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 1-31
Author(s):  
Yongzhe Chen ◽  
Xiaoming Feng ◽  
Bojie Fu

Abstract. Soil moisture is an important variable linking the atmosphere and terrestrial ecosystems. However, long-term satellite monitoring of surface soil moisture at the global scale needs improvement. In this study, we conducted data calibration and data fusion of 11 well-acknowledged microwave remote-sensing soil moisture products since 2003 through a neural network approach, with Soil Moisture Active Passive (SMAP) soil moisture data applied as the primary training target. The training efficiency was high (R2=0.95) due to the selection of nine quality impact factors of microwave soil moisture products and the complicated organizational structure of multiple neural networks (five rounds of iterative simulations, eight substeps, 67 independent neural networks, and more than 1 million localized subnetworks). Then, we developed the global remote-sensing-based surface soil moisture dataset (RSSSM) covering 2003–2018 at 0.1∘ resolution. The temporal resolution is approximately 10 d, meaning that three data records are obtained within a month, for days 1–10, 11–20, and from the 21st to the last day of that month. RSSSM is proven comparable to the in situ surface soil moisture measurements of the International Soil Moisture Network sites (overall R2 and RMSE values of 0.42 and 0.087 m3 m−3), while the overall R2 and RMSE values for the existing popular similar products are usually within the ranges of 0.31–0.41 and 0.095–0.142 m3 m−3), respectively. RSSSM generally presents advantages over other products in arid and relatively cold areas, which is probably because of the difficulty in simulating the impacts of thawing and transient precipitation on soil moisture, and during the growing seasons. Moreover, the persistent high quality during 2003–2018 as well as the complete spatial coverage ensure the applicability of RSSSM to studies on both the spatial and temporal patterns (e.g. long-term trend). RSSSM data suggest an increase in the global mean surface soil moisture. Moreover, without considering the deserts and rainforests, the surface soil moisture loss on consecutive rainless days is highest in summer over the low latitudes (30∘ S–30∘ N) but mostly in winter over the mid-latitudes (30–60∘ N, 30–60∘ S). Notably, the error propagation is well controlled with the extension of the simulation period to the past, indicating that the data fusion algorithm proposed here will be more meaningful in the future when more advanced microwave sensors become operational. RSSSM data can be accessed at https://doi.org/10.1594/PANGAEA.912597 (Chen, 2020).


Sign in / Sign up

Export Citation Format

Share Document