Combining multi-GNSS phase bias products for improved undifferenced ambiguity resolution

Author(s):  
Jianghui Geng ◽  
Yuanxin Pan ◽  
Songfeng Yang ◽  
Pan Li

<p>The rapid development of multi-GNSS constellations, e.g., Galileo and BeiDou, is catalyzing innovations in high-precision applications. Precise point positioning ambiguity resolution (PPP-AR) has been essential to achieving the highest positioning precision using multi-GNSS data in wide areas. In recent years, several International GNSS Service analysis centers (IGS ACs such as CNES, CODE, WHU) have been providing phase bias products to enable PPP-AR, but whether these AC-specific multi-GNSS (e.g., GPS/Galileo/BeiDou-2/3) products are compatible with each other and whether they can be reconciled for an IGS combination product are pending. In this study, we combined phase bias products from four organizations for GPS/Galileo/BeiDou-2/3 in 2020. All phase bias products are first converted to observable-specific representation and then reconciled with satellite clocks before the combination; their capability of recovering integer undifferenced ambiguities has been always kept after properly addressing inter-system biases and satellite attitude discrepancies. It is found that the RMS of clock alignment residuals are around 6.8, 7.1, 14.9 and 14.6 ps for GPS, Galileo BeiDou-2 and BeiDou-3, respectively. BeiDou products perform worse due largely to sparse tracking networks and deficient orbit models. In a kinematic PPP experiment with 151 global MGEX (Multi-GNSS Experiment) stations, the combined phase bias products provide better or at least equivalent positioning results as opposed to AC specific products. Compared with ambiguity-float solutions, ambiguity-fixed PPP solutions can improve the positioning precision by 29-50% in the east component. With combined phase bias products, the positioning precision of GPS/Galileo/BDS-2/3 PPP-AR solutions can achieve 0.62, 0.64 and 1.90 cm in the east, north and up components, respectively, in contrast to 0.87, 0.88 and 2.60 cm for GPS only PPP-AR solutions.</p>

2021 ◽  
Vol 13 (15) ◽  
pp. 3035
Author(s):  
Songfeng Yang ◽  
Qiyuan Zhang ◽  
Xi Zhang ◽  
Donglie Liu

Precise point positioning with ambiguity resolution (PPP-AR) based on multiple global navigation satellite system (multi-GNSS) constellations is an important high-precision positioning tool. However, some unmodeled satellite and receiver biases (such as errors in satellite attitude) make it difficult to fix carrier-phase ambiguities. In order to fix ambiguities of eclipsing satellites, accurate integer clock and satellite attitude products (i.e., attitude quaternion) have been provided by the International GNSS Service (IGS). Nevertheless, the quality of these products and their positioning performance in multi-GNSS PPP-AR have not been investigated yet. Using the PRIDE PPP-AR II software associated with the corresponding rapid satellite orbit, integer clock and attitude quaternion products of Wuhan University (WUM), we carried out GPS/BDS PPP-AR using 30 days of data in an eclipsing season of 2020. We found that about 75% of GPS, 60% of BDS-2 and 57% of BDS-3 narrow-lane ambiguity residuals after integer clock corrections fall within ±0.1 cycles in the case of using nominal attitudes. However, when using attitude quaternions, these percentages will rise to 80% for GPS, 70% for BDS-2 and 60% for BDS-3. GPS/BDS daily kinematic PPP-AR after integer clock and nominal attitude corrections can usually achieve a positioning precision of about 10, 10 and 30 mm for the east, north and up components, respectively. In contrast, the counterparts are 8, 8 and 20 mm when using attitude quaternions. Compared with the case of using attitude quaternions only at the network end for the integer clock estimation, using attitude quaternions only at the user end shows a pronounced improvement of 15% in the east component and less than 10% in the north and up components. Therefore, we suggest PPP users apply integer clock and satellite attitude quaternion products to realize more efficient ambiguity fixing, especially in satellite eclipsing seasons.


2019 ◽  
Vol 11 (21) ◽  
pp. 2477 ◽  
Author(s):  
Georgia Katsigianni ◽  
Sylvain Loyer ◽  
Felix Perosanz

Precise point positioning (PPP) has been used for decades not only for general positioning needs but also for geodetic and other scientific applications. The CNES-CLS Analysis Centre (AC) of the International GNSS Service (IGS) is performing PPP with phase ambiguity resolution (PPP-AR) using the zero-difference ambiguity fixing approach also known as “Integer PPP” (IPPP). In this paper we examine the postprocessed kinematic PPP and PPP-AR using Galileo-only, GPS-only and Multi-GNSS (GPS + Galileo) constellations. The interest is to examine the accuracy for each GNSS system individually but also of their combination to measure the current benefits of using Galileo within a Multi-GNSS PPP and PPP-AR. Results show that Galileo-only positioning is nearly at the same level as GPS-only; around 2–4 mm horizontal and aound 10 mm vertical repeatability (example station of BRUX). In addition, the use of Galileo system—even uncompleted—improves the performance of the positioning when combined with GPS giving mm level repeatability (improvement of around 30% in East, North and Up components). Repeatabilities observed for Multi-GNSS (GPS + GAL) PPP-AR, taking into account the global network statistics, are a little larger, with 8 mm in horizontal and 17 mm in vertical directions. This result shows that including Galileo ameliorates the best positioning accuracy achieved until today with GPS PPP-AR.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xingyu Chen

AbstractWhen using Global Navigation Satellite System (GNSS) measurements, Precise Point Positioning with Ambiguity Resolution (PPP-AR) has been a popular substitute for relative positioning in geoscience applications. Compared with the Fractional Cycle Biases (FCB) method, the processing of Integer Recovery Clocks (IRC) products estimate, especially for ambiguity datum fixing, is so complex that its application has been greatly limited. Based on the concept of “carrier range”, we introduce an efficient way to implement the IRC method, termed as the alternative IRC method in this paper. In this method, the fixed ambiguities derived from PPP-AR using the FCB method, and not a fixed-ambiguity datum, are fixed in the IRC products estimate. This greatly reduces the complexity of implementing the IRC method and does not influence the accuracy of positioning. The alternative IRC method outperforms the FCB method by corroborating the consistency of daily positions in nature with international GNSS service weekly solution. To confirm this improvement, global positioning system measurements acquired over a year (2016) from approximately 500 globally distributed stations were processed. The accuracy of IRC products is approximately 20 ps and is highly stable for this year. Moreover, comparing the positioning accuracy of the FCB method to the alternative IRC method, we find that the mean root mean square over the year falls evidently from 2.03 to 1.65 mm at the east component. Therefore, we suggest that the alternative IRC method should be implemented when estimate IRC products.


2020 ◽  
Vol 12 (14) ◽  
pp. 2185 ◽  
Author(s):  
Wen Zhao ◽  
Hua Chen ◽  
Yang Gao ◽  
Weiping Jiang ◽  
Xuexi Liu

The BeiDou navigation satellite system (BDS) currently has 41 satellites in orbits and will reach its full constellation following the launch of the last BDS satellite in June 2020 to provide navigation, positioning, and timing (PNT) services for global users. In this contribution, we investigate the characteristics of inter-system bias (ISB) between BDS-2 and BDS-3 and verify whether an additional ISB parameter should be introduced for the BDS-2 and BDS-3 precise point positioning (PPP). The results reveal that because of different clock references applied for BDS-2 and BDS-3 in the International GNSS Service (IGS) precise satellites clock products and the inconsistent code hardware delays of BDS-2 and BDS-3 for some receiver types, an ISB parameter needs to be introduced for BDS-2 and BDS-3 PPP. Further, the results show that the ISB can be regarded as a constant within a day, the value of which is closely related to the receiver type. The ISB values of the stations with the same receiver type are similar to each other, but a great difference may be presented for different receiver types, up to several meters. In addition, the impact of ISB on PPP has also been studied, which demonstrates that the performance of kinematic PPP could be improved when ISB is introduced.


2015 ◽  
Vol 11 (3) ◽  
pp. 31-37
Author(s):  
Sorin Nistor ◽  
Aurelian Stelian Buda

Abstract To obtain the coordinates by means of precise point positioning (PPP) technique we need to use the undifferenced GPS pseudocode and carrier phase observations but to obtain the “precise” positioning we need precise orbit and clock data too. This products and other information for obtaining the results by using PPP technique on a centimeter level accuracy can be downloaded from different locations, but the most reliable satellite ephemerides and clock correction are available from International GNSS Service (IGS). In the PPP analysis we determined the parameters such as the receiver clock error, ionospheric delays code biases, code multipath and the total neutral atmosphere delay of the observations. For the determination of the permanent station coordinates, using the PPP technique, we used precise orbit and clock solutions to enable absolute positioning of a single receiver. In this article we present the results obtained by using the PPP technique on the permanent station Oradea, from which we can conclude that the PPP technique can be used for different GNSS application.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Tianjun Liu ◽  
Hua Chen ◽  
Qusen Chen ◽  
Weiping Jiang ◽  
Denis Laurichesse ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3266
Author(s):  
Chao Chen ◽  
Guorui Xiao ◽  
Guobin Chang ◽  
Tianhe Xu ◽  
Liu Yang

Suffering from hardware phase biases originating from satellites and the receiver, precise point positioning (PPP) requires a long convergence time to reach centimeter coordinate accuracy, which is a major drawback of this technique and limits its application in time-critical applications. Ambiguity resolution (AR) is the key to a fast convergence time and a high-precision solution for PPP technology and PPP AR products are critical to implement PPP AR. Nowadays, various institutions provide PPP AR products in different forms with different strategies, which allow to enable PPP AR for Global Positioning System (GPS) and Galileo or BeiDou Navigation System (BDS). To give a full evaluation of PPP AR performance with various products, this work comprehensively investigates the positioning performance of GPS-only and multi-GNSS (Global Navigation Satellite System) combination PPP AR with the precise products from CNES, SGG, CODE, and PRIDE Lab using our in-house software. The positioning performance in terms of positioning accuracy, convergence time and fixing rate (FR) as well as time to first fix (TTFF), was assessed by static and kinematic PPP AR models. For GPS-only, combined GPS and Galileo PPP AR with different products, the positioning performances were all comparable with each other. Concretely, the static positioning errors can be reduced by 21.0% (to 0.46 cm), 52.5% (to 0.45 cm), 10.0% (to 1.33 cm) and 21.7% (to 0.33 cm), 47.4% (to 0.34 cm), 9.5% (to 1.16 cm) for GPS-only and GE combination in north, east, up component, respectively, while the reductions are 20.8% (to 1.13 cm), 42.9% (to 1.15 cm), 19.9% (to 3.4 cm) and 20.4% (to 0.72 cm), 44.1% (to 0.66 cm), 10.1% (to 2.44 cm) for kinematic PPP AR. Overall, the positioning performance with CODE products was superior to the others. Furthermore, multi-GNSS observations had significant improvements in PPP performance with float solutions and the TTFF as well as the FR of GPS PPP AR could be improved by adding observations from other GNSS. Additionally, we have released the source code for multi-GNSS PPP AR, anyone can freely access the code and example data from GitHub.


2021 ◽  
Vol 56 (2) ◽  
pp. 18-34
Author(s):  
Omer Faruk Atiz ◽  
Ibrahim Kalayci

Abstract The precise point positioning (PPP) method has become more popular due to powerful online global navigation satellite system (GNSS) data processing services, such as the Canadian Spatial Reference System-PPP (CSRS-PPP). At the end of 2020, the CSRS-PPP service launched the ambiguity resolution (AR) feature for global positioning system (GPS) satellites. More reliable results are obtained with AR compared to the results with traditional ambiguity-float PPP. In this study, the performance of the modernized CSRS-PPP was comparatively assessed in terms of static positioning and zenith total delay (ZTD) estimation. Data for 1 month in the year 2019 obtained from 47 international GNSS service (IGS) stations were processed before and after modernization of the CSRS-PPP. The processes were conducted for GPS and GPS + GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) satellite combinations. Besides, the results were analyzed in terms of accuracy and convergence time. According to the solutions, the AR feature of the CSRS-PPP improved the accuracy by about 50% in the east component for GPS + GLONASS configuration. The root-mean-square error (RMSE) of the ZTD difference between modernized CSRS-PPP service and IGS final troposphere product is 5.8 mm for the GPS-only case.


Sign in / Sign up

Export Citation Format

Share Document