Diachronous exhumation of the Carpathians from low-temperature thermochronology

Author(s):  
Marion Roger ◽  
Peter van der Beek ◽  
Arjan de Leeuw ◽  
Laurent Husson

<p>The Carpathians fold-and-thrust belt results from oblique collision of ALCAPA and Tisza-Dacia plates with the eastern European margin. It formed during the Oligocene and Miocene, propagating laterally from NW to SE as clearly demonstrated by balanced-cross sections (Nakapelyukh et al., 2017; Castellucio et al., 2016; Merten et al., 2010). The coeval development of the foreland basin (Roure et al., 1993) is revealed by an axial transport system that prograded from NW to SE, ultimately supplying sediments to the Black Sea (de Leeuw et al., 2020). However, lacking a regional synthesis and integration of thermochronology data, lateral propagation of exhumation in the orogen has not been demonstrated yet.</p><p> We reconstruct the exhumation history of the entire Carpathians from the Oligocene onwards and link it with the development of the Carpathians foreland basin (CFB) using a source-to-sink approach. We compiled more than 500 apatite and zircon fission-track and (U-Th)/He ages from the literature. This comprehensive database was separated by region (Western, Eastern, and South-Eastern Carpathians) and by tectonic domain (as defined in Schmid et al., 2008). This partitioning allows for the inversion of large datasets, reflects the tectonic complexity of the belt, and avoids spurious spatial correlations (Schildgen et al., 2018). The thermochronology data was inverted using Pecube (Braun et al., 2012) to constrain exhumation rates in a Bayesian approach. We thus obtain estimates of exhumation rates through time along the belt (with their uncertainty) and convert these into bulk  sediment fluxes over time, permitting tracking of sediment routing from the eroding belt to the CFB. Ultimately, these data will be used to unravel deeper geodynamics, including the possible effects of slab detachment on the evolution of the belt and its foreland basin.</p><p> </p><p>Key words: Low-temperature thermochronology, Carpathians, exhumation, source to sink, Pecube inversions.</p>

2021 ◽  
Author(s):  
Philémon Juvany ◽  
Miguel Garcés

<div> </div><div> <p>The early Eocene was a period of the intense collision during the formation of the Pyrenees. The flexural response to loading of the overriding European plate led to the formation of an elongated foredeep on the subducting Iberian plate which connected westward to the Atlantic Ocean. A thrust salient formed in the central Pyrenees, where Mesozoic Cover units travelled southwards on top of Triassic salt detachment. This process resulted in the sequencing of the foreland basin in different isolated sub-basins such as the Ripoll basin in the East, the Tremp-Graus and Ainsa-Jaca basins in central and western south Pyrenees and the Ager basin located south of the Tremp-Graus basin.  The precise timing and surface processes associated to this reorganization of the sedimentary routing system remains not totally understood. Indeed, various sedimentary provenance studies show that the sediments of the Tremp-Graus basin were sourced from a different catchment zone than those of the Ager basin. Besides, the Ripoll basin sediments provenance analysis shows major similarities with the Ager basin, suggesting a common catchment area in the Eastern Pyrenees. However, it has been pointed out that the clastic systems feeding the rapidly subsiding sink of the Ripoll through could not find their way towards the shallower Ager basin. In this PhD project we aim at providing further constraints to the paleogeographic reconstruction and sediment routing systems of the South Eastern Pyrenees in the light of a revised chronostratigraphic scheme. A Source-to-Sink approach will be followed to study the sediment Routing Systems and to decode the climatic and tectonic signal from the sedimentary record. It will follow a volumetric quantification of the sediment budget over the entire foreland, and a comparison with eroded rock volumes of the whole Pyrenees. The resulting revised scenario will seek conciliation of all available data from the stratigraphic, structural, petrologic, geochronologic and sedimentologic datasets with new radiogenic isotopes sedimentary provenance analysis.  </p> </div>


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Andrea Di Capua ◽  
Federica Barilaro ◽  
Gianluca Groppelli

This work critically reviews the Eocene–Oligocene source-to-sink systems accumulating volcanogenic sequences in the basins around the Alps. Through the years, these volcanogenic sequences have been correlated to the plutonic bodies along the Periadriatic Fault System, the main tectonic lineament running from West to East within the axis of the belt. Starting from the large amounts of data present in literature, for the first time we present an integrated 4D model on the evolution of the sediment pathways that once connected the magmatic sources to the basins. The magmatic systems started to develop during the Eocene in the Alps, supplying detritus to the Adriatic Foredeep. The progradation of volcanogenic sequences in the Northern Alpine Foreland Basin is subsequent and probably was favoured by the migration of the magmatic systems to the North and to the West. At around 30 Ma, the Northern Apennine Foredeep also was fed by large volcanogenic inputs, but the palinspastic reconstruction of the Adriatic Foredeep, together with stratigraphic and petrographic data, allows us to safely exclude the Alps as volcanogenic sources. Beyond the regional case, this review underlines the importance of a solid stratigraphic approach in the reconstruction of the source-to-sink system evolution of any basin.


Terra Nova ◽  
2016 ◽  
Vol 28 (5) ◽  
pp. 297-305 ◽  
Author(s):  
Andreas Wölfler ◽  
Walter Kurz ◽  
Harald Fritz ◽  
Christoph Glotzbach ◽  
Martin Danišík

2013 ◽  
Vol 45 (1) ◽  
pp. 37-43
Author(s):  
Anna Ronikier

New localities of <em>Hygrocybe salicis-herbaceae</em> were observed during the research on the fungi of the alpine zone in the Carpathians. This is the first record of this arctic-alpine fungus in the South-Eastern Carpathians. Macro- and micromorphological characters of the Carpathian collections are compared with the descriptions from other regions. A revision of literature data indicates that the sites in the Parâng Mts. reported here are the only known localities of the species from the entire Carpathian range.


2021 ◽  
Author(s):  
Abhishek kumar Singh ◽  
Nishith Bhatt

&lt;p&gt;The understanding of the sediment routing system and source-to-sink dynamics in a catchment is vital as it helps to assess areas undergoing erosion and deposition. This is significant in catchments which undergo active mining activities especially natural sand materials. The role of climate and natural erosional processes is vital in this as mining of sand is also affected by natural replenishment. In present study, we take a case study of a small catchment of 30km length ~ Chharri, situated in arid landscape of Kachchh of western India. Using geomorphic assemblage mapped using remote sensing and field investigation, we identified natural sub-sinks (depocenters) in the Chharri river valley. The investigation was validated by studying sediment profiles of the depocentral landforms in seasonal time series (pre-monsoon and post monsoon sessions). The changes in morphology, sediments accumulations were integrated to assess the natural sand replenishment in areas which had been undergoing mining activity. Based on time series data it was deduced that the small catchments in dry-land environments, the sand production and dynamics is modulated by type of vegetation, pattern in precipitation and human intervention. The results of such source-to-sink study have long-term implications on sand replenishment, mining activity and landscape evolution of such river basins.&lt;/p&gt;


2021 ◽  
Author(s):  
Rocio Jaimes-Gutierrez ◽  
Thierry Adatte ◽  
Emmanuelle Puceat ◽  
Jean Braun ◽  
Sebastien Castelltort

&lt;p&gt;The Paleocene and early Eocene were periods yielding multiple hyperthermal events. The most pronounced of them was the Paleocene-Eocene Thermal Maximum (PETM), which was characterized by an abrupt increase in global temperature (5&amp;#8211;8 &amp;#176;C) over a short time (20 ka). A negative carbon isotope excursion marks the onset of the PETM, which resulted in the fast injection of CO&lt;sub&gt;2&lt;/sub&gt; into the ocean-atmosphere system, triggering global climatic changes. Geochemical, mineralogical, and sedimentological markers record the resulting increase in continental weathering. This is important, as enhanced chemical erosion influences both the CO&lt;sub&gt;2&lt;/sub&gt; concentration in the atmosphere and ocean acidity, generating a feedback mechanism. Hence, constraining the rates and intensity of weathering response can further clarify the causes for the PETM and Eocene hyperthermals. This study focuses on the well-preserved Pyrenean foreland basin and intends to assess the continental chemical weathering response of the sediment routing system during the PETM. Clay mineralogy is a climate-sensitive proxy, which records changes in continental erosion. Therefore, clay mineral proportions will be analyzed using X-ray diffraction and major element chemistry on clay-rich samples from the entire source-to-sink system (continental to deep marine deposits). Kaolinite and smectite will be separated from the detrital clay fraction and further subjected to &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O and &amp;#948;D isotopic analysis for paleoclimatic reconstruction. The combined Lu-Hf and Sm-Nd isotope systems in the clay fraction of the sediments will be used to track the evolution of chemical weathering intensity. The outcome of this project will serve to validate numerical models to understand erosion as a function of rapid climatic change. This topic is of keen interest, as the PETM and its sedimentological signal work as a natural analog for anthropogenically-induced climatic change. The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 860383.&lt;/p&gt;


2020 ◽  
Author(s):  
Sarah Louis ◽  
Elco Luijendijk ◽  
Christoph von Hagke ◽  
István Dunkl ◽  
Ralf Littke ◽  
...  

&lt;p&gt;Foreland basin sediments mirror the history of an orogeny. Deformation and geodynamic processes in low spatial extend (e.g. dozens of km) can be quantified using kinematic restoration. Processes happening deep underneath an orogen show a large spatial manifestation that is difficult to quantify in time and space. Marine units at surface outcrops show 900 m of net uplift since deposition in undeformed parts of the alpine foreland basin. Existing low-temperature thermochronology data from the Swiss part of the Molasse Basin show a thermal overprint that indicates exhumation of more than 1.5 km. We quantify the wavelength of deep seated processes of the Alpine orogen by generating and analyzing a holistic dataset of the entire alpine foreland basin. In addition to compiling existing data from the western part of the basin we have generated a new apatite (U-Th)/He and vitrinite reflectance data set from the central and eastern part of the basin. The new apatite (U-Th)/He ages in the German part of the basin show exhumation below or close to the detection limit (~1.5 km). Within the folded and thrusted Molasse, exhumation is localized along thrusts and the thermochronological data indicates thrusting between 10 to 20 Ma. Vitrinite reflectance data reveals a trend of exhumation increasing from East to West. Parts of the central German Molasse basin have been exhumed as well. Thus, on the large scale we can see longwave exhumation patterns in the western part of the basin that affect both the deformed and undeformed parts of the basin which cannot only be related to Jura thrusting.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document