The three-dimensional life cycles of potential vorticity cutoffs

Author(s):  
Raphael Portmann ◽  
Michael Sprenger ◽  
Heini Wernli

<p>The aim of this study is to explore the nature of potential vorticity (PV) cutoff life cycles. While climatological frequencies of such upper-level cyclonic vortices are well known, their life cycle and in particular their three-dimensional evolution is poorly understood. To address this gap, a novel method is introduced that uses isentropic air parcel trajectories to track PV cutoffs as three-dimensional objects. With this method, we can distinguish the two fundamentally different PV cutoff lysis scenarios on isentropic surfaces: complete diabatic decay vs. reabsorption by the stratospheric reservoir.</p><p>This method is applied to the ERA-interim dataset (1979-2018) and the first global climatology of PV cutoffs is presented that is independent of the selection of a vertical level and identifies and tracks PV cutoffs as three-dimensional features. More than 140’000 PV cutoff life cycles are identified and analyzed. The climatology confirms known frequency maxima of PV cutoffs and identifies additional bands in subtropical areas in the summer hemispheres and a circumpolar band around Antarctica. The first climatological analysis of diabatic decay and reabsorption shows that both scenarios occur equally frequently – in contrast to the prevailing opinion that diabatic decay dominates.</p><p>Further, PV cutoffs are classified according to their position relative to jet streams [equatorward (type I), between two jets (type II), and poleward (type III)]. A composite analysis of PV cutoff genesis shows distinct dynamical scenarios for the three types. Type I forms due to anticyclonic Rossby wave breaking above subtropical surface anticyclones and hardly results in precipitation. Type II results from anticyclonic Rossby wave breaking downstream of the storm tracks and is frequently accompanied by surface cyclogenesis and substantial precipitation. Type III cutoffs preferentially form due to wave breaking within mature extratropical cyclones in the storm track regions. We show that important track characteristics (speed, travel distance, frequency of decay and reabsorption, vertical evolution) differ between the categories, while lifetime is similar in all categories. </p><p>Finally, twelve PV cutoff genesis regions in DJF and JJA are selected to study the regional characteristics of PV cutoff life cycles. We find that many characteristics of these PV cutoffs reflect the preferred regional occurrence of the different life cycle types. However, a few regions are characterized by substantially longer (e.g. central subtropical North Atlantic in summer) or shorter (Mediterranean in summer) lifetimes than most other regions. Furthermore, a remarkable variability in the vertical evolution of PV cutoffs is found. While in some regions, PV cutoffs rapidly disappear at lower levels by diabatic decay, they can grow downward in other regions. We also show that in many regions PV cutoffs can be involved in surface cyclogenesis even after their formation.</p><p>This study is an important step towards quantifying fundamental dynamical characteristics and the surface impacts of PV cutoffs. The proposed classification according to the jet-relative position provides a useful way to improve the conceptual understanding of PV cutoff life cycles. However, these life cycles can be substantially modified by specific regional conditions.</p>

2021 ◽  
Vol 2 (2) ◽  
pp. 507-534
Author(s):  
Raphael Portmann ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. The aim of this study is to explore the nature of potential vorticity (PV) cutoff life cycles. While climatological frequencies of such near-tropopause cyclonic vortices are well known, their life cycle and in particular their three-dimensional evolution is poorly understood. To address this gap, a novel method is introduced that uses isentropic air parcel trajectories to track PV cutoffs as three-dimensional objects. With this method, we can distinguish the two fundamentally different PV cutoff lysis scenarios on isentropic surfaces: complete diabatic decay vs. reabsorption by the stratospheric reservoir. This method is applied to the ERA-Interim dataset (1979–2018), and the first global climatology of PV cutoffs is presented that is independent of the selection of a vertical level and identifies and tracks PV cutoffs as three-dimensional features. More than 150 000 PV cutoff life cycles are identified and analyzed. The climatology confirms known frequency maxima of PV cutoffs and identifies additional bands in subtropical areas in the summer hemispheres and a circumpolar band around Antarctica. The first climatological analysis of diabatic decay and reabsorption shows that both scenarios occur equally frequently – in contrast to the prevailing opinion that diabatic decay dominates. Then, PV cutoffs are classified according to their position relative to jet streams (equatorward (Type I), between two jets (Type II), and poleward (Type III)). A composite analysis shows distinct dynamical scenarios for the genesis of the three types. Type I forms due to anticyclonic Rossby wave breaking above subtropical surface anticyclones and hardly results in precipitation. Type II results from anticyclonic Rossby wave breaking in mid-latitudes in regions with split-jet conditions and is frequently accompanied by surface cyclogenesis and substantial precipitation. Type III cutoffs preferentially form due to cyclonic Rossby wave breaking within extratropical cyclones in the storm track regions. We show that important track characteristics (speed, travel distance, frequency of decay and reabsorption, isentropic levels) differ between the categories, while lifetime is similar in all categories. Finally, 12 PV cutoff genesis regions in DJF and JJA are selected to study the regional characteristics of PV cutoff life cycles. As a particularly novel aspect, the vertical evolution of PV cutoffs along the life cycle is investigated. We find that, climatologically, PV cutoffs reach their maximum vertical extent about one day after genesis in most regions. However, while in some regions PV cutoffs rapidly disappear at lower levels by diabatic decay, they can grow downward in other regions. In addition, regional differences in lifetimes, the frequencies of diabatic decay and reabsorption, and the link to surface cyclones are identified that cannot be explained only by the preferred regional occurrence of the different cutoff types as defined above. Finally, we also show that in many regions PV cutoffs can be involved in surface cyclogenesis even after their formation. This study is an important step towards quantifying fundamental dynamical characteristics and the surface impacts of PV cutoffs. The proposed classification according to the jet-relative position provides a useful way to improve the conceptual understanding of PV cutoff life cycles in different regions of the globe. However, these life cycles can be substantially modified by specific regional conditions.


2020 ◽  
Author(s):  
Raphael Portmann ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. The aim of this study is to explore the nature of potential vorticity (PV) cutoff life cycles. While climatological frequencies of such upper-level cyclonic vortices are well known, their life cycle and in particular their three-dimensional evolution is poorly understood. To address this gap, a method is introduced that allows tracking PV cutoffs as three-dimensional objects. As it is based on isentropic air parcel trajectories, the detailed evolution of the cutoffs on isentropic surfaces, including their associated cross-tropopause mass fluxes, can be analyzed. The novel method is applied to the ERA-interim dataset for the years 1979–2017 and the first global climatology of PV cutoffs is presented that is independent of the selection of a vertical level and identifies and tracks PV cutoffs as three-dimensonal features. More than 40 000 PV cutoff life cycles are identified and analyzed in the almost 40-year data set. Known frequency maxima of PV cutoffs are confirmed and, additionally, bands in subtropical areas in the summer hemispheres and a circumpolar band around Antarctica are identified. A detailed investigation of PV cutoff life cycles in different genesis regions reveals that PV cutoff genesis occurs as a result of distinct Rossby wave breaking scenarios. In addition, there is a remarkable regional variability of PV cutoff mobility, lifetimes and vertical evolution. This regional variability of PV cutoff behaviour can to some extent be explained by differences in cross-tropopause mass fluxes and the varying frequencies of different lysis scenarios on isentropic surfaces, i.e. diabatic decay and reabsorption to the stratospheric reservoir. It is found that, on a global average, reabsorption occurs about as frequently as diabatic decay, but on higher isentropic levels. Further, the temporal link between PV cutoffs and associated surface cyclones is investigated. Novel insights are that (i) the frequency and characteristics of this link strongly depend on the region, and (ii) PV cutoffs are frequently involved in surface cyclogenesis a few days after their formation. PV cutoffs forming from similar Rossby wave breaking scenarios in different regions also show remarkable similarities in other characteristics of their life cycle. Based on that, a classification of PV cutoff life cycles into three types is proposed: Type I forms from anticyclonic Rossby wave breaking equatorward of the jet stream, Type II is the result of anticyclonic Rossby wave breaking followed by cyclonic Rossby wave breaking between the polar and the subtropical jets, and Type III forms from cyclonic wave breaking in the storm track regions. While diabatic decay is particularly frequent for Types I and II, reabsorption dominates for the Type III life cycle.


Genetics ◽  
1974 ◽  
Vol 77 (4) ◽  
pp. 639-650
Author(s):  
Satoshi Harashima ◽  
Yasuhisa Nogi ◽  
Yasuji Oshima

ABSTRACT There are four types of life cycles in Saccharomyces cerevisiae and its related species. A perfect homothallic life cycle (the Ho type) is observed in the classic D strain. Two other types show semi-homothallism; one of them shows a 2-homothallic diploid:2α heterothallic haploid segregation (the Hp type) and another, a 2-homothallic:2a segregation (the Hq type). In the segregants from these Ho, Hp, and Hq diploids, each homothallic segregant shows the same segregation pattern as its parental diploid. The fourth type has a heterothallic life cycle showing a 2a:2α segregation and the diploids are produced by the fusion of two haploid cells of opposite mating types. The diploids prepared by the crosses of α Hp (an α haploid segregant from the Hp diploid) to a Hq (an a haploid from the Hq diploid) segregated two types (Type I and II) of the Ho type homothallic clone among their meiotic segregants. Genetic analyses were performed to investigate this phenomenon and the genotypes of the Ho type homothallic clones of Type I and Type II. Results of these genetic analyses have been most adequately explained by postulating three kinds of homothallic genes, each consisting of a single pair of alleles, HO/ho, HMα/hmα, and HMa/hma, respectively. One of them, the HMα locus, was proved to be loosely linked (64 stranes) to the mating-type locus. A spore having the HO hmα hma genotype gives rise to an Ho type homothallic diploid (Type I), the same as in the case of the D strain which has the HO HMα HMa genotype (Type II). A spore having the a HO hmα HMa or α HO HMα hma genotype will produce an Hp or Hq type homothallic diploid culture, respectively. The other genotypes, a HO HMα hma, α HO hmα HMa, and the genotypes combined with the ho allele give a heterothallic character to the spore culture. A possible molecular hypothesis for the mating-type differentiation with the controlling elements produced by the HMα and HMa genes is proposed.


2011 ◽  
Vol 68 (4) ◽  
pp. 798-811 ◽  
Author(s):  
Thando Ndarana ◽  
Darryn W. Waugh

Abstract A 30-yr climatology of Rossby wave breaking (RWB) on the Southern Hemisphere (SH) tropopause is formed using 30 yr of reanalyses. Composite analysis of potential vorticity and meridional fluxes of wave activity show that RWB in the SH can be divided into two broad categories: anticyclonic and cyclonic events. While there is only weak asymmetry in the meridional direction and most events cannot be classified as equatorward or poleward in terms of the potential vorticity structure, the position and structure of the fluxes associated with equatorward breaking differs from those of poleward breaking. Anticyclonic breaking is more common than cyclonic breaking, except on the lower isentrope examined (320 K). There are marked differences in the seasonal variations of RWB on the two surfaces, with a winter minimum for RWB around 350 K but a summer minimum for RWB around 330 K. These seasonal variations are due to changes in the location of the tropospheric jets and dynamical tropopause. During winter the subtropical jet and tropopause at 350 K are collocated in the Australian–South Pacific Ocean region, resulting in a seasonal minimum in the 350-K RWB. During summer the polar front jet and 330-K tropopause are collocated over the Southern Atlantic and Indian Oceans, inhibiting RWB in this region.


2013 ◽  
Vol 140 (680) ◽  
pp. 738-753 ◽  
Author(s):  
Iñigo Gómara ◽  
Joaquim G. Pinto ◽  
Tim Woollings ◽  
Giacomo Masato ◽  
Pablo Zurita-Gotor ◽  
...  

2021 ◽  
pp. 17-28
Author(s):  
A. V. Gochakov ◽  
◽  
O. Yu. Antokhina ◽  
V. N. Krupchatnikov ◽  
Yu. V. Martynova ◽  
...  

Many large-scale dynamic phenomena in the Earth’s atmosphere are associated with the processes of propagation and breaking of Rossby waves. A new method for identifying the Rossby wave breaking (RWB) is proposed. It is based on the detection of breakings centers by analyzing the shape of the contours of potential vorticity or temperature on quasimaterial surfaces: isentropic and iserthelic (surfaces of constant Ertel potential vorticity (PV)), with further RWB center clustering to larger regions. The method is applied to the set of constant PV levels (0.3 to 9.8 PVU with a step of 0.5 PVU) at the level of potential temperature of 350 K for 12:00 UTC. The ERA-Interim reanalysis data from 1979 to 2019 are used for the method development. The type of RWB (cyclonic/anticyclonic), its area and center are determined by analyzing the vortex geometry at each PV level for every day. The RWBs obtained at this stage are designated as elementary breakings. Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) was applied to all elementary breakings for each month. As a result, a graphic dataset describing locations and dynamics of RWBs for every month from 1979 to 2019 is formed. The RWB frequency is also evaluated for each longitude, taking into account the duration of each RWB and the number of levels involved, as well as the anomalies of these parameters.


2021 ◽  
Author(s):  
Christoph Fischer ◽  
Elmar Schömer ◽  
Andreas H. Fink ◽  
Michael Riemer ◽  
Michael Maier-Gerber

<p>Potential vorticity streamers (PVSs) are elongated quasi-horizontal filaments of stratospheric air in the upper troposphere related to, for example, Rossby wave breaking events. They are known to be related to partly extreme weather events in the midlatitudes and subtropics and can also be involved in (sub-)tropical cyclogenesis. While several algorithms have been developed to identify and track PVSs on planar isentropic surfaces, less is known about the evolution of these streamers in 3D, both climatologically but also for a better understanding of individual weather events. Furthermore, characteristics of their 3D shape have barely been considered as a predictor for high impact weather events like (sub-)tropical cyclones.</p><p>We introduce a novel algorithm for detection and identification of PVSs based on image processing techniques which can be applied to 2D and 3D gridded datasets. The potential vorticity was taken from high resolution isentropic analyses based on the ERA5 dataset. The algorithm uses the 2 PVU (Potential Vorticity Unit) threshold to identify and extract anomalies in the PV field using signed distance functions. This is accomplished by using a stereographic projection to eliminate singularities and keeping track of the reduced distortions by storing precomputed distance maps. This approach is computationally efficient and detects more interesting structures that exhibit the general behavior of PVSs compared to existing 2D techniques.</p><p>For each identified object a feature vector is computed, containing the individual characteristics of the streamers. In the 3D case, the algorithm looks at the structure en bloc instead of operating individually on multiple 2D levels. This also makes the identification stable regarding the seasonal cycle. Feature vectors contain parameters about quality, intensity and shape. In the case of 2D datasets, best-fitting ellipses computed from the statistical moments are regarded as a description of their shape. For 3D datasets, recent visualizations show that the boundary of these structures could be approximated by quadric surfaces . The feature vectors are also amended by tracking information, for example splitting and merging events. This low-dimensional representation serves as base for ERA5 climatologies. The data will be correlated with (sub-)tropical cyclone occurrence to spot useful and novel predictors for cyclone activity and preceding Rossby Wave Breaking events.</p><p>Overall, this new type of PVS identification algorithm, applicable in 2D or 3D, allows to diagnose the role of PVS in extreme weather events, including their predictability in ensemble forecasts.</p>


Sign in / Sign up

Export Citation Format

Share Document