Influence of tillage practice on major pathways of CH4 emission in rice paddy field

Author(s):  
Hiyori Namie ◽  
kasane Shimada ◽  
Shuang shuang Zhao ◽  
Munehide Ishiguro ◽  
Ryusuke Hatanano

<p> Generally, during the paddy rice cultivation period, CH<sub>4</sub> produced in the soil is reported to be released to the atmosphere through three pathways: diffusion (<1%), bubbles (<10%), and via rice (> 90%). However, there are few studies have measured gas diffusion coefficient for soil below surface of the water, and there is no study has provided an accurate understanding of CH<sub>4</sub> dynamics in paddy fields. Furthermore, there are few studies that understanding the CH<sub>4</sub> dynamics in fertilizer-free and pesticide-free paddy fields, which is mainly controlled by inter-tillage practices. Therefore, this study aimed to clarify the effects of tillage and the number of inter-tillage and the presence or absence of fertilizer and pesticide on the CH<sub>4</sub> dynamics in rice paddy soil. This study compared three types of CH<sub>4</sub> flux, which were total CH<sub>4</sub> flux from rice paddy field measured by transparent chamber with plants, and soil derived CH<sub>4</sub> flux measured by dark chamber without plants, and gas diffusion flux calculated as a product of the gas diffusion coefficient and measured soil gas concentration gradient at the depths of 0-5 and 5-10cm. And they were compared with in the five rice cultivation periods (flooding, mid-drying, intermittent irrigation, drainage, and fallowing) and in the four treatment plots (conventional farming (CF), and fertilizer- and pesticide-free farming with zero-inter-tillage(T0), two-inter-tillage(T2), and five-inter-tillage (T5)). The CF was conducted according to the regional recommendation for tillage, fertilization and pest and weed control. The results showed that the peak of total CH<sub>4</sub> flux was observed in the mid-drying and intermittent irrigation periods in all treatments, and that the CH<sub>4 </sub>flux via rice plant accounted for 60-90% of the total CH<sub>4</sub> flux. The CF showed significantly highest CH<sub>4</sub> emission during the periods, and the increase of the number of inter-tillage tended to increase the CH<sub>4</sub> emission. In the drainage period, the CH<sub>4</sub> flux by bubbles in the CF and T5 accounted for more than 80% of the total CH<sub>4</sub> flux. In the fallowing period, the diffusion CH<sub>4</sub> flux at the depth of 5-10cm increased in all treatments, but the low total CH<sub>4 </sub>emission and increased CO<sub>2</sub> emission. This study revealed that incorporation of organic matter into soil in conventional rice farming tended to increase CH<sub>4</sub> emission. The main pathway of CH<sub>4</sub> emission from rice paddy field was via rice, and it was influenced by tillage significantly. The decomposition of organic matter from rice straw and weeds incorporated into soil was the source of the bubble of CH<sub>4</sub>. Furthermore, it seemed that the most of diffusively transferred CH<sub>4</sub> was easily oxidized to CO<sub>2</sub>.</p>

Author(s):  
Haiming Tang ◽  
Chao Li ◽  
Lihong Shi ◽  
Li Wen ◽  
Kaikai Cheng ◽  
...  

Abstract Soil organic matter (SOM) and its fractions play an important role in maintaining or improving soil quality and soil fertility. Therefore, the effects of a 34-year long-term fertilizer regime on six functional SOM fractions under a double-cropping rice paddy field of southern China were studied in the current paper. The field experiment included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM) and without fertilizer input as control (CK). The results showed that coarse unprotected particulate organic matter (cPOM), biochemically, physically–biochemically and chemically protected silt-sized fractions (NH-dSilt, NH-μSilt and H-dSilt) were the main carbon (C) storage fractions under long-term fertilization conditions, accounting for 16.7–26.5, 31.1–35.6, 16.2–17.3 and 7.5–8.2% of the total soil organic carbon (SOC) content in paddy soil, respectively. Compared with control, OM treatment increased the SOC content in the cPOM, fine unprotected POM fraction, pure physically protected fraction and physico-chemically protected fractions by 58.9, 106.7, 117.6 and 28.3%, respectively. The largest proportion of SOC to total SOC in the different fractions was biochemically protected, followed by chemically and unprotected, and physically protected were the smallest. These results suggested that a physical protection mechanism plays an important role in stabilizing C of paddy soil. In summary, the results showed that higher functional SOM fractions and physical protection mechanism play an important role in SOM cycling in terms of C sequestration under the double-cropping rice paddy field.


2011 ◽  
Vol 8 (12) ◽  
pp. 3809-3821 ◽  
Author(s):  
A. Meijide ◽  
G. Manca ◽  
I. Goded ◽  
V. Magliulo ◽  
P. di Tommasi ◽  
...  

Abstract. Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10–12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 g CH4 m−2 measured with chambers and EC respectively) and even greater differences are found if shorter periods with high chamber sampling frequency are compared. The differences may be a result of the combined effect of overestimation with the chambers and of the possible underestimation by the EC technique.


2018 ◽  
Vol 23 (4) ◽  
pp. 536-539
Author(s):  
Muhammad Athar Khan ◽  
Muhammad Zahid Latif ◽  
Syed Amir Gilani ◽  
Ifrah Bukhari

Leptospirosis is a global zoonotic infectious disease having alarming public health concerns. Generally this is an occupation related disease and the victims belong to animal slaughtering, owners of pet shops, farm workers, handlers of meat, sewerage and agriculture workers. Leptospirosis affect multiple organs in human body and may lead to myocarditis, renal failure, respiratory distress and hypotension. This disease is an emerging infectious problem in many developing countries like Pakistan. A total of 250 subjects were selected from five different rice growing districts of Punjab, Pakistan after the approval of institutional ethical review board (IERB), 250 subjects were selected for this comparative cross sectional study. Multiple stage probability technique was used for sampling. In the first stage one union council was selected from each district randomly. In the second stage, 25 subjects involved in rice cultivation from the last 10 years wereselected from each union council. Similarly 25 subjects who never worked in the rice paddy field were also randomly selected from each union council as controls. The serum sample of each subject was tested against each of the five antigens against the serovars. A total of 250 subjects were included in the study. Out of these, 125 subjects were exposed to the rice paddy water where as 125 were not exposed to rice paddy water. The cumulative seropositivity among the exposed is (83.2%) as compared to (42%) among the non exposed to rice paddy field water. The calculated cumulative odds ratio is 6.7 which represent a strong association of the risk for the development of disease among the exposed than the non exposed subjects. Leptospirosis is a public health zoonotic disease which is widely present in tropical and sub tropical areas. This study concludes that there is a strong association of rice cultivation with Leptospirosis. It is recommended that rice cultivators should protect their body parts with gloves or boots as prevention is the most appropriate way to control any disease.


2011 ◽  
Vol 44 (5) ◽  
pp. 887-894 ◽  
Author(s):  
Jee-Yeon Ko ◽  
Jae-Saeng Lee ◽  
Koan-Sik Woo ◽  
Seok-Bo Song ◽  
Jong-Rae Kang ◽  
...  

2011 ◽  
Vol 8 (5) ◽  
pp. 8999-9032 ◽  
Author(s):  
A. Meijide ◽  
G. Manca ◽  
I. Goded ◽  
V. Magliulo ◽  
P. di Tommasi ◽  
...  

Abstract. Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in an eddy-covariance field set-up in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season, both with EC and with manually operated closed chambers. Methane fluxes were strongly influenced by the presence of the water table, with emissions peaking when it was above 10–12 cm. Further studies are required to evaluate if water table management could decrease CH4 emissions. The development of rice plants and soil temperature were also responsible of the seasonal variation on the fluxes. The EC measured showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between both measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.8 g CH4 m−2 measured with chambers and EC respectively). The differences may be a result of the combined effect of overestimation with the chambers, the possible underestimation by the EC technique and of not having considered the daily course of the fluxes for the calculation of seasonal emissions from chambers.


2018 ◽  
pp. 231-244 ◽  
Author(s):  
Kazuyuki Yagi ◽  
Katsumi Kumagai ◽  
Haruo Tsuruta ◽  
Katsuyuki Minami

Sign in / Sign up

Export Citation Format

Share Document