Serpentinite Mud Volcanism and Exhumation of Forearc- and Lower Plate Material in the Mariana Convergent Margin System (IODP Expedition 366)

Author(s):  
Irena Miladinova ◽  
Walter Kurz ◽  
Arianna V. Del Gaudio ◽  
Werner Piller

<p>Serpentine seamounts located in the forearc region of a subduction zone represent an excellent natural laboratory for studying the geochemical processes acting along convergent plate margins as well as the forearc structure and the related fault patterns. Active serpentinite mud volcanoes are currently restricted only to the Izu-Bonin-Mariana system, where old (presumably Cretaceous) oceanic lithosphere is subducting in the absence of an accretionary prism.</p><p>IODP Expedition 366 recovered cores from three serpentinite mud volcanoes at increasing distances from the Mariana trench (Yinazao, Fantangisña and Asùt Tesoro). Most of the material consists of serpentinite mud containing lithic clasts from the underlying forearc crust and mantle as well as from the subducting Pacific plate. Pelagic sediments and volcanic ash deposits underlying the mud volcanoes were also recovered. Recycled materials from the subducted slab are found at all three mud volcanoes and consist of metavolcanics, metamorphosed pelagic sediments including cherty limestone as well as fault rocks.</p><p>Preliminary investigation of lithic clasts from the furthest Asùt Tesoro Seamount revealed metavolcanics as well as serpentinized ultramafics with well-preserved primary mineral assemblages containing olivine, orthopyroxene and spinel.</p><p>Recovered clasts from the summit of the adjacent Fantangisña Seamount contain mainly sedimentary rocks of probable Pacific plate provenance. These consist of red cherty limestone breccia, red shale and mud-siltstone transected by a network of carbonate veins. In contrast, recovered material from the flank shows a wider variety including ultramafic rocks with various degrees of serpentinization and matrix composed of mesh and bastite textures, mafic metavolcanics as well as low-grade metasediments (cherty limestones). Interestingly, garnet with andradite composition occurs throughout the matrix of the ultramafics, indicating serpentinization temperatures of at least 225 °C.</p><p>Petrological analysis of metabasalt clasts from the flank of Fantangisña shows changes in the mineral composition within the different core intervals. The composition of clinopyroxene varies between aegirine-augite and omphacite, but augite and diopside are also present. The presence of phengite with Si content of up to 3.5 a.p.f.u. as well as the Na-content in pyroxene indicate minimum pressure of 0.7 GPa at ~250 °C. Additionaly, this estimation is supported by the presence of prehnite, chlorite and pumpellyite. </p><p>Furthermore, providing a detailed characterization of the fluids composition and transport would allow the better constraining of the tectonic and metamorphic history as well as the physical properties of the subducting Pacific Plate. Additional data on that will be presented.</p>

2020 ◽  
Author(s):  
Walter Kurz ◽  
Irena Miladinova ◽  
Arianna V. Del Gaudio ◽  
Werner Piller ◽  
Kurt Krenn

<p>Serpentine seamounts located in the forearc region of a subduction zone setting represent an excellent natural laboratory for studying the geochemical processes acting along convergent plate margins and the associated natural hazards as well as the forearc structure and fault patterns. Active serpentinite mud volcanoes are currently restricted only to the Izu-Bonin-Mariana system, where old (presumably Cretaceous) oceanic lithosphere is subducting in the absence of an accretionary prism.</p><p>IODP Expedition 366 recovered cores from three serpentinite mud volcanoes at increasing distances from the Mariana trench (Yinazao, Fantangisña and Asùt Tesoru). Most of the material consists of serpentinite mud containing lithic clasts from the underlying forearc crust and mantle as well as from the subducting Pacific plate. A thin cover of pelagic sediments and volcanic ash deposits underlying the mud volcanos were also recovered. Recycled materials from the subducted slab are found at all three mud volcanoes and consist of metavolcanics rocks, metamorphosed pelagic sediments including cherty limestone as well as fault rocks.</p><p>Preliminary investigation of recovered sedimentary clasts from the summit of Fantangisña Seamount revealed that they contain primary calcite veins, whereas the latest veins are composed of aragonite (CaCO₃) and barite (BaSO₄).</p><p>Recovered clasts from the flank consist mainly of ultramafic rocks with various degrees of serpentinization. The serpentinite veins consist of lizardite and chrysotile, which suggests rather low temperatures of serpentinization (below 200 °C). Petrological analysis of metabasalt clasts from the same drilling hole shows changes in the mineral composition within the different intervals of the core. The composition of clinopyroxene varies between aegirine-augite and omphacite, but augite is also present. The presence of phengite with Si content of 3.5-3.8 a.p.f.u. indicates minimum pressure of 0.7 GPa at ~250 °C.</p><p>Furthermore, providing a detailed characterization of the fluids composition and transport would allow the better constraining of the tectonic and metamorphic history as well as the physical properties of the subducting Pacific Plate. Obtaining data on that point is in progress and will be presented additionally.</p>


2021 ◽  
Author(s):  
Dongwoo Han ◽  
Changyeol Lee

<p>Heat flow in the fore-arc, Northeast Japan shows characteristic highs and lows in the seaward and landward regions of the trench axis, respectively, compared to 50 mW/m<sup>2</sup> that is constrained from the corresponding half-space cooling model (135 Ma). For example, the high average of 70 mW/m<sup>2</sup> at the 150-km seaward region from the trench was observed while the low average of 30 mW/m<sup>2</sup> at the 50-km landward region was. To explain the differences between the constraints and observations of the heat flow, previous studies suggested that the high heat flow in the seaward region results from the reactivated hydrothermal circulations in the oceanic crust of the Pacific plate along the developed fractures by the flexural bending prior to subduction. The low heat flow is thought to result from thermal blanket effect of the accretionary prism that overlies the cooled subducting slab by the hydrothermal circulations. To understand heat transfer in the landward region of the trench, a series of two-dimensional numerical models are constructed by considering hydrothermal circulations in the kinematically thickening accretionary prism that overlies the converging oceanic crust of the Pacific plate where hydrothermal circulations developed prior to subduction. The model calculations demonstrate no meaningful hydrothermal circulations when the reasonable bulk permeability of the accretionary prism(<10<sup>-14</sup>m<sup>2</sup>) is used; the thermal blanket effect significantly hinders the heat transfer, yielding only the heat flow of 10 mW/m<sup>2</sup> in the landward region, much lower than the average of 30 mW/m<sup>2</sup>. This indicates that other mechanisms such as the expelled pore fluid by compaction of the accretionary prism play important roles in the heat transfer across the accretionary prism.</p>


2021 ◽  
Vol 16 (7) ◽  
pp. 1047-1051
Author(s):  
Seong-Ho Ha ◽  
Abdul Wahid Shah ◽  
Bong-Hwan Kim ◽  
Young-Ok Yoon ◽  
Hyun-Kyu Lim ◽  
...  

The effect of the phase fraction ratio between Al3Mg2 and Mg2Si on the oxidation resistance of Al–Mg–Si alloys at high temperatures was investigated. With addition of 1 mass%Si in Al-6 mass%Mg alloy, the as-cast microstructures showed formation of Mg2Si phase by eutectic reactions. With increasing Si content more than 3 mass%, the Mg2Si and Si are formed as eutectic phases with no β-Al3Mg2 phase. In addition, with an increase in the Si content from 3 mass%, significantly refined as-cast microstructures and distribution of extended eutectic phase areas were observed. The oxidized cross-sections of Al-6 mass%Mg and Al-6 mass%Mg-1 mass%Si alloys showed coarse and dark areas, which are considered as oxide clusters, nonuniformly grown into the matrix. However, Al-6 mass%Mg-3 mass%Si and Al-6 mass%Mg-5 mass%Si alloys had no significantly grown oxide clusters on the surfaces. Based on the results, it was concluded that the reduction of the ratio between β-Al3Mg2 and Mg2Si phases can reduce the rapid oxidation of Mg.


2020 ◽  
Author(s):  
Nicholas Leventis ◽  
Thomas Zack ◽  
Iain Pitcairn ◽  
Johan Högmalm

<p>The Pontiac subprovince consists of metaturbidites, plutons and thin ultramafic rock layers of Archean age and lies south of the Cadillac-Larder Lake (C-LL) fault zone which is the boundary between the Pontiac and the extensively mineralized Abitibi Greenstone Belt. The sediments show a Barrovian metamorphic gradient which increases southwards, away from the C-LL fault. The most likely tectonic provenance for the Pontiac sedimentary rocks is that they represent a relic accretionary prism with material derived from both the Abitibi and an older terrane. Zircon U-Pb dating shows that deposition occurred not later than 2685±3 Ma ago and recent, robust Lu-Hf dating of garnets bracketed Pontiac's peak metamorphic conditions at 2658±4 Ma. For this study we used a recently developed LA-ICP-MS/MS method for in-situ Rb-Sr dating of biotite and plagioclase in samples ranging in metamorphic grade (biotite to sillimanite zones) from the Pontiac subprovince. Calibration of the instrument was achieved by repeated ablations on several reference materials (see Hogmalm et al. 2017) which also provided the monitoring of accuracy and precision throughout the analyses. Results show a range in dates between 2550 Ma and 2200 Ma with an average of 2440±50 Ma (2σ). Samples from the staurolite and kyanite zones have a larger range with respect to the other zones, but no significant differences are observed in the data with any method of data handing. These dates are ≈300Ma younger than the peak metamorphism in the area and this is attributed to either overgrowth and re-setting of the Rb-Sr system by a second metamorphic/hydrothermal event, or diffusional resetting with core-rim age variations. Possible influence from the adjacent late syntectonic to post-tectonic monzodiorite-monzonite-granodiorite-syenite (MMGS) plutons dated 2671±4 Ma and the garnet-muscovite-granite series (GMG) dated ≈2650 Ma cannot be ruled out. This study provides insights about the metamorphic history of the sequence and supports previous findings regarding resetting of some isotopic systems with relatively low closure temperatures (≈350-400°C) by later thermal events.</p>


Pebbles are commonly used parameters for the determination of finite strain in deformed rocks. In high grade metamorphic environments, rocks probably behave as viscous fluids and a theory exists which relates the deformation experienced by a pebble to that of the host rocks. However, some deformed conglomerates are found in low grade metamorphic rocks where the assumption of viscous behaviour is unrealistic The deformation of artificial conglomerates made of geological materials, at room temperature and varying confining pressure is described. In these experiments, pebbles deform by cataclasis at surprisingly low applied loads and large finite strains are achieved. The amount of deformation experienced by pebbles of different rock types depends mainly on their yield strengths and ductility contrasts with respect to the matrix. A theoretical analysis assuming that pebble and matrix behave as workhardening Bingham materials during deformation relates the strain experienced by a pebble to that of the host rock. The results suggest that significant pebble deformation can occur during gravitational loading of sediments. An attempt is made to verify this idea by analysing the shape of pebbles in conglomerates of the Upper Witwatersrand System. At some sites the pebbles appear to have deformed during gravitational compaction while at others a tectonic deformation has been superimposed upon the pre-tectomic strain.


1997 ◽  
Vol 44 (5) ◽  
pp. 811-841 ◽  
Author(s):  
Karine Olu ◽  
Sophie Lance ◽  
Myriam Sibuet ◽  
Pierre Henry ◽  
Aline Fiala-Médioni ◽  
...  

Author(s):  
Aida Farough ◽  
Alexander Karrasch

Understanding the physical properties of ultramafic rocks is important for evaluating awide variety of petrologic models of the oceanic lithosphere, particularly upper mantle and lower crust. Hydration of oceanic peridotites results in increasing serpentine content, which affects lithospheric physical properties and the global bio/geochemical cycles of various elements. In understanding tectonic, magmatic and metamorphic history of the oceanic crust, interpreting seismic velocities, rock composition and elastic moduli are of fundamental importance. In this study we show that as serpentine content increases, density decreases linearly with a slope of 7.85. We also correlate increase in serpentine content with a linear decline in shear, bulk and Young’s moduli with slopes of 0.48, 0.77, 0.45 respectively. Our results show that increase in serpentine content of lower crust and forearc mantle could decrease elasticity of lithospehere and result in break-offs. Therefore tectonic processes at peridotite rich slow spreading ridges may be strongly affected by serpentine content, particularly serpentinization may be responsible for discontinuities in thin crust, and formation of weak fault zones.


2021 ◽  
Author(s):  
Laura Airaghi ◽  
Benoit Dubacq ◽  
Anne Verlaguet ◽  
Franck Bourdelle ◽  
Nicolas Bellahsen ◽  
...  

<p>Strain accommodation in upper crustal rocks is often accompanied by fluid-mediated crystallization of phyllosilicates, which influence rock strength and shear zone formation. The composition of these phyllosilicates is commonly used for pressure-temperature-time constraints of deformation events, although it is often highly heterogeneous. This study investigates the reactions producing a phyllosilicate, chlorite, in and below greenschist-facies conditions and the variations in chlorite composition, along a strain gradient in the Bielsa granitoid (Axial Zone, Pyrenees). Compositional maps of chlorite (including iron speciation) are compared to nanostructures observed by transmission electron microscopy in increasingly-strained samples and related to mechanisms of fluid percolation and scales of compositional homogenisation. In the Bielsa granitoid, altered at the late Variscan, Alpine-age shear zones are found with high strain gradients. The undeformed granitoid exhibits local equilibria, pseudomorphic replacement and high compositional heterogeneities in chlorite. This is attributed to: (i) variable element supply and reaction mechanisms observed at nanoscale and (ii) little interconnected intra- and inter-grain nanoporosity causing isolation of fluid evolving in local reservoirs. In samples with discrete and mm-sized fractures, channelized fluid triggered the precipitation of homogeneous Alpine chlorite in fractures, preserving late-Variscan chlorite within the matrix. In low-grade mylonites, where brittle-ductile deformation is observed, micro-, nano-cracks and defects allows the fluid percolating into the matrix at the scale of hundreds of µm. This results in a more pervasive replacement of late-Variscan chlorite by Alpine chlorite. Local equilibria and high compositional heterogeneities in phyllosilicates as chlorite are therefore preserved according (i) matrix-fracture porosity contrasts at nanoscale and (ii) the location and interconnection of nanoporosity between crystallites of phyllosilicates that control reaction mechanisms and element mobility. In low grade mylonites, mineral and compositional replacement remains incomplete despite the high strain.</p>


2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Franz Neubauer ◽  
Yongjiang Liu ◽  
Ruihong Chang ◽  
Sihua Yuan ◽  
Shengyao Yu ◽  
...  

AbstractMany metamorphosed basement complexes in the Alps are polymetamorphic and their origin and geological history may only be deciphered by detailed geochronology on the different members including oceanic elements like ophiolites, arc successions, and continental passive margin successions. Here we present a case study on the Lower Austroalpine Variegated Wechsel Gneiss Complex and the overlying low-grade metamorphosed Wechsel Phyllite Unit at the eastern margin of Alps. The Wechsel Gneiss Complexes are known to have been overprinted by Devonian metamorphism, and both units were affected by Late Cretaceous greenschist facies metamorphism. New U–Pb zircon ages reveal evidence for two stages of continental arc-like magmatism at 500–520 Ma and 550–570 Ma in the Variegated Wechsel Gneiss Complex. An age of ca. 510 Ma of detrital zircons in metasedimentary rocks also constrain the maximum age of metasedimentary rocks, which is younger than Middle Cambrian. The overlying Wechsel Phyllite Unit is younger than 450 Ma (Late Ordovician) and seems to have formed by denudation of the underlying Variegated Wechsel Gneiss Complex. We speculate on potential relationships of the continental arc-type magmatism of the Variegated Wechsel Gneiss Complex and potential oceanic lithosphere (Speik complex) of Prototethyan affinity, which is also preserved in the Austroalpine nappe complex. The abundant, nearly uniform 2.1 Ga- and ca. 2.5 Ma-age signature of detrital zircons in metasediments (paragneiss, quartzite) of the Variegated Wechsel Gneiss Complex calls for Lower Proterozoic continental crust in the nearby source showing the close relationship to northern Gondwana prominent in West Africa and Amazonia.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Pierre Mueller ◽  
Matteo Maino ◽  
Silvio Seno

This paper reports the results of a field-based structural investigation of a well-exposed paleo-accretionary prism, which experienced complex deformation in a low-grade metamorphic setting. Field analyses focused on the description of structural fabrics, with the main emphasis upon parameters like the orientation, style and kinematics of foliations, folds and shear zones. We address the research to the south-westernmost part of the Alpine chain, the Ligurian Alps, where, despite their origin as turbidite sequences deposited into the closing Alpine Tethys Ocean, the Helminthoid Flysch Nappes are presently distributed in the outer part of the chain, above the foreland. The new dataset highlights different deformation patterns related to the different spatial distribution of the flysch units. This regional-scale partitioning of strain is hence associated with progressive deformation within a two-stage geodynamic evolution. Correlations among the different orogenic domains allow the proposal of a kinematic model that describes the motion of the Helminthoid Flysch from the inner to the outer part of the orogen, encompassing the shift from subduction- to collision-related Alpine geodynamic phases.


Sign in / Sign up

Export Citation Format

Share Document