scholarly journals Progressive Deformation Patterns from an Accretionary Prism (Helminthoid Flysch, Ligurian Alps, Italy)

Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Pierre Mueller ◽  
Matteo Maino ◽  
Silvio Seno

This paper reports the results of a field-based structural investigation of a well-exposed paleo-accretionary prism, which experienced complex deformation in a low-grade metamorphic setting. Field analyses focused on the description of structural fabrics, with the main emphasis upon parameters like the orientation, style and kinematics of foliations, folds and shear zones. We address the research to the south-westernmost part of the Alpine chain, the Ligurian Alps, where, despite their origin as turbidite sequences deposited into the closing Alpine Tethys Ocean, the Helminthoid Flysch Nappes are presently distributed in the outer part of the chain, above the foreland. The new dataset highlights different deformation patterns related to the different spatial distribution of the flysch units. This regional-scale partitioning of strain is hence associated with progressive deformation within a two-stage geodynamic evolution. Correlations among the different orogenic domains allow the proposal of a kinematic model that describes the motion of the Helminthoid Flysch from the inner to the outer part of the orogen, encompassing the shift from subduction- to collision-related Alpine geodynamic phases.

2020 ◽  
Vol 191 ◽  
pp. 2 ◽  
Author(s):  
Dominique Chardon ◽  
Ousmane Bamba ◽  
Kalidou Traoré

Shear zones of the Paleoproterozoic Eburnean accretionary Orogen (West African craton) are investigated by means of large-scale structural mapping. Regional scale (10-100 km) mapping was based on the aeromagnetic survey of Burkina Faso and craton-scale (1000 km) mapping on a compilation of fabric data. At both scales, shear zones are arranged as an anastomosed transpressional network that accommodated distributed shortening and lateral flow of the orogenic lithosphere between the converging Kénéma-Man and Congo Archean provinces. Structural interference patterns at both scales were due to three-dimensional partitioning of progressive transpressional deformation and interactions among shear zones that absorbed heterogeneities in the regional flow patterns while maintaining the connectivity of the shear zone network. Such orogen-scale kinematic patterns call for caution in using the deformation phase approach without considering the “bigger structural picture” and interpreting displacement history of individual shear zones in terms of plate kinematics. The West African shear zone pattern is linked to that of the Guiana shield through a new transatlantic correlation to produce an integrated kinematic model of the Eburnean-Transamazonian orogen.


2020 ◽  
Author(s):  
Giancarlo Molli ◽  
Andrea Brogi ◽  
Alfredo Caggianelli ◽  
Enrico Capezzuoli ◽  
Domenico Liotta ◽  
...  

<p>An updated revision of the upper Carboniferous-Permian tectonics recorded in Corsica, Calabria and Tuscany is here proposed. We combine our and literature data to document how the sedimentary, tectono-metamorphic and magmatic upper Carboniferous-Permian record fits with a regional-scale tectonic scenario characterized by trascurrent fault systems associated with stretched crustal domains in which extensional regional structures, magmatism and transtensional basins developed. In Corsica, altogether with well-known effusive and intrusive Permian magmatism, the alpine S.Lucia nappe exposes a kilometer-scale portion of the Permian lower to mid-crust, with many similarities to the Ivrea-Verbano zone. The two distinct Mafic and Leucogranitic complexes, which characterize this crustal domain are juxtposed by an oblique-slip shear zone named as S.Lucia Shear Zone. Structural and petrological data document interaction between magmatism, metamorphism and shearing during Permian in the c. 800-400 °C temperature range. In Calabria (Sila, Serre and Aspromonte), a continuous pre-Mesozoic crustal section is exposed. The lower crust portion of such section is mainly made up of granulites and migmatitic paragneisses with subordinate marbles and metabasites. The mid-crustal section includes an up to 13 km thick sequence of granitoids of tonalitic to granitic composition, emplaced between 306 and 295 Ma and progressively deformed during retrograde extensional shearing to end with a final magmatic activity between 295 and 277 Ma, consisting in the injection of shallower dykes in a transtensional regime. The section is completed by an upper crustal portion mainly formed by a Paleozoic succession deformed as a low-grade fold and thrust belt, locally overlaying medium-grade paragneiss units, and therefore as a whole reminiscent of the external/nappe zone domains of Sardinia Hercynian orogen. In Tuscany we document, how late Carboniferous/Permian shallow marine to continental sedimentary basins characterized by unconformity and abrupt change in sedimentary facies (coal-measures, red fanglomerate deposits) and acid magmatism well fit a transtensional setting with a mid-crustal shear zone linked with a system of E-W trending (in present orientation) upper crust splay faults. We will frame the whole dataset in a regional framework of first-order transcurrent shear zones network which includes a westernmost S.Lucia Shear Zone and an easternmost East Tuscan Shear Zone, with intervening crustal domains in which extensional to transtensional shearing occured.</p>


1994 ◽  
Vol 31 (7) ◽  
pp. 1256-1286 ◽  
Author(s):  
John A. Percival ◽  
Gordon F. West

Over the past decade, the Kapuskasing uplift has been the subject of intense geological and geophysical investigation as Lithoprobe's window on the deep-crustal structure of the Archean Superior Province. Enigmatic since its recognition as a positive gravity anomaly in 1950, the structure has been variably interpreted as a suture, rift, transcurrent shear zone, or intracratonic thrust. Diverse studies, including geochronology, geothermobarometry, and various geophysical probes, provide a comprehensive three-dimensional image of Archean (2.75–2.50 Ga) crustal evolution and Proterozoic (2.5–1.1 Ga) cooling and uplift. The data favour an interpretation of the structure as an intracratonic uplift related to Hudsonian collision.Eastward across the southern Kapuskasing uplift, erosion levels increase from < 10 km in the Michipicoten greenstone belt, through the Wawa gneiss domain (10–20 km), into granulites (20–30 km) of the Kapuskasing structural zone, juxtaposed against the low-grade Swayze greenstone belt along the Ivanhoe Lake fault zone. Most volcanic rocks in the greenstone belts erupted in the interval 2750–2700 Ma and were thrust, folded, and cut by late plutons and transcurrent faults before 2670 Ma. Wawa gneisses include major 2750–2660 and minor 2920 Ma tonalitic components, deformed in several events including prominent late subhorizontal extensional shear zones prior to 2645 Ma. Supracrustal rocks of the Kapuskasing zone have model Nd ages of 2750–2700 Ma, metamorphic zircon ages of 2696–2584 Ma, and titanite ages of 2600–2493 Ma, reflecting deposition, intrusion, complex deformation, recrystallization, and cooling during prolonged deep-crustal residence. Postorogenic unroofing rapidly cooled shallow (10–20 km) parts of the Superior Province, but metamorphism and local deformation continued in the ductile deep crust, overlapping the time of late gold deposition in shear zones in the shallow brittle regime.Elevation of granulites, expressed geophysically as positive gravity anomalies and a west-dipping zone of high refraction velocities, dates from a major episode of transpressive faulting. Analysis of deformation effects in Matachewan (2454 Ma), Biscotasing (2167 Ma), and Kapuskasing (2040 Ma) dykes, as well as the brittle nature of fault rocks and cooling patterns of granulites, constrains the time of uplift to ca, 1.9 Ga. Approximately 27 km of shortening was accommodated through brittle upper crustal thrusting and ductile growth of an 8 km thick root in the lower crust that has been maintained by relatively cool, strong mantle lithosphere. The present configuration of the uplift results from overall dextral displacement in which the block was broken and deformed by dextral, normal, and sinistral faults, and modified by later isostatic adjustment. Seismic reflection profiles display prominent northwest-dipping reflectors believed to image lithological contacts and ductile strain zones of Archean age; the indistinct reflection character of the Ivanhoe Lake fault is probably related to its brittle nature formed through brecciation and cataclasis at temperatures < 300 °C. The style and orientation of Proterozoic structures may have been influenced by the Archean crustal configuration.


2021 ◽  
Author(s):  
Pritam Ghosh ◽  
Kathakali Bhattacharyya

&lt;p&gt;We examine how the deformation profile and kinematic evolutionary paths of two major shear zones with prolonged deformation history and large translations differ with varying structural positions along its transport direction in an orogenic wedge. We conduct this analysis on multiple exposures of the internal thrusts from the Sikkim Himalayan fold thrust belt, the Pelling-Munsiari thrust (PT), the roof thrust of the Lesser Himalayan duplex (LHD), and the overlying Main Central thrust (MCT). These two thrusts are regionally folded due to growth of the LHD and are exposed at different structural positions. The hinterlandmost exposures of the MCT and PT zones lie in the trailing parts of the duplex, while the foreland-most exposures of the same studied shear zones lie in the leading part of the duplex, and thus have recorded a greater connectivity with the duplex. The thicknesses of the shear zones progressively decrease toward the leading edge indicating variation in deformation conditions. Thickness-displacement plot reveals strain-softening from all the five studied MCT and the PT mylonite zones. However, the strain-softening mechanisms varied along its transport direction with the hinterland exposures recording dominantly dislocation-creep, while dissolution-creep and reaction-softening are dominant in the forelandmost exposures. Based on overburden estimation, the loss of overburden on the MCT and the PT zones is more in the leading edge (~26km and ~15km, respectively) than in the trailing edge (~10km and ~17km, respectively), during progressive deformation. Based on recalibrated recrystallized quartz grain thermometer (Law, 2014), the estimated deformation temperatures in the trailing edge are higher (~450-650&amp;#176;C) than in the leading edge (350-550&amp;#176;C) of the shear zones. This variation in the deformation conditions is also reflected in the shallow-crustal deformation structures with higher fracture intensity and lower spacing in the leading edge exposures of the shear zones as compared to the trailing edge exposures.&lt;/p&gt;&lt;p&gt;The proportion of mylonitic domains and micaceous minerals within the exposed shear zones increase and grain-size of the constituent minerals decreases progressively along the transport direction. This is also consistent with progressive increase in mean R&lt;sub&gt;s&lt;/sub&gt;-values toward leading edge exposures of the same shear zones. Additionally, the &amp;#945;-value (stretch ratio) gradually increases toward the foreland-most exposures along with increasing angular shear strain. Vorticity estimates from multiple incremental strain markers indicate that the MCT and PT zones generally record a decelerating strain path. Therefore, the results from this study are counterintuitive to the general observation of a direct relationship between higher Rs-value and higher pure-shear component. We explain this observation in the context of the larger kinematics of the orogen, where the leading edge exposures have passed through the duplex structure, recording the greatest connectivity and most complete deformation history, resulting in the weakest shear zone that is also reflected in the deformation profiles and strain attributes. This study demonstrates that the same shear zone records varying deformation profile, strain and kinematic evolutionary paths due to varying deformation conditions and varying connectivity to the underlying footwall structures during progressive deformation of an orogenic wedge.&lt;/p&gt;


1997 ◽  
Vol 41 (01) ◽  
pp. 69-80
Author(s):  
Mark D. Bracco ◽  
Tomasz Wierzbicki

This paper studies the cutting by a wedge of advanced double hull (ADH) small-scale models. A total of six cutting experiments were performed with six different wedge geometries. Complex deformation patterns observed in the damaged specimens were simplified to obtain a closed-form upper bound for the steady-state cutting force. The ADH steady-state cutting force solution varied from 6% above to 12% below the experimental mean steady-state force. The absolute average error is 5%.


2021 ◽  
Author(s):  
Jesper Petersson ◽  
Peter Hultgren ◽  
Mansueto Morosini ◽  
Frédéric Mathurin

&lt;p&gt;The development of an updated geoscientific site descriptive model (SDM) is currently in progress for the &amp;#196;sp&amp;#246; Hard Rock Laboratory (&amp;#196;sp&amp;#246; HRL), the key underground research facility of the Swedish Nuclear Fuel and Waste Management Company (SKB). &amp;#196;sp&amp;#246; HRL is located in south-eastern Sweden, within a suite of 1.81&amp;#8211;1.76 Ga granitoids, and consists of a tunnel system down to 460 m depth with a total length of about 5 km. Tectonically, the area is part of a contractional shear belt, primarily manifested by a NE-SW trending regional deformation zone, which partly transect the underground facility. The shear zone system has evolved gradually over a prolonged period, with an initial low-grade ductile development, followed by multiple events of brittle reactivation. The structural framework is characterised by a signi&amp;#64257;cant heterogeneity in the hydraulic &amp;#64258;ow properties, where the most transmissive structures belong to a set of less extensive, conjugate zones and fractures.&lt;/p&gt;&lt;p&gt;More than 30 years of studies, starting with the pre-investigations and construction of the facility, have generated a wealth of geoscientific data in 3-D space, and hence a sound basis for an update of existing models. The SDM under current development aims to present an integrated geoscientific understanding of the &amp;#196;sp&amp;#246; site, with special focus on geology, hydrogeology and hydrogeochemistry. The general working procedure includes basically an initial stage of data capture, followed by an intermediate interpretative stage, and finally the construction of 3-D models with associated concepts and parameters. An explicit goal throughout the work has been to encourage interaction between the different geo-disciplines, especially during the interpretative stage, as a forerunner to the final stage of deterministic/conceptual modelling. During the interpretative stage, geological and geophysical information were combined into two basic building blocks along individual boreholes, tunnels, and outcrops: rock units and possible deformation zones, which were assigned hydraulic parameters such as primarily K-values. The subsequent geological 3-D modelling comprises two components: rock domains and deformation zones with a surface trace length of &amp;#8805; 300 m. Hydrogeological feedback was provided in terms of K-anisotropies and depth trends.&lt;/p&gt;&lt;p&gt;The fundamental outcome of the modelling is a more profound conceptual understanding, along with geometries and properties for each domain or zone. Additional outcomes are data on and understanding of the effects of 25 years of artificial tunnel drainage on groundwater pressures, flow and chemistry. The natural groundwater system, originally formed by paleoclimatic and geological factors over a vast period, has be profoundly influenced by important monitored phenomena. Upflow of deep-lying saline water and extensive intrusion of current seawater disclose the apparent hydro-properties and interconnection between deformation zones.&lt;/p&gt;&lt;p&gt;Currently, geological 3-D model includes geometries for ten rock domains and 24 deformation zones, the latter with seamless transitions to zones of the regional scale Laxemar model, as developed by the SKB with the objective of siting a geological repository for spent nuclear fuel in the proximity to the &amp;#196;sp&amp;#246; HRL. As completed, the models will serve as framework for more detailed-scaled facility models.&lt;/p&gt;


2020 ◽  
Vol 50 (1) ◽  
pp. 237-250 ◽  
Author(s):  
Michael B. Stephens

AbstractAn intimate lithostratigraphic and lithodemic connection between syn-orogenic rock masses inside the different lithotectonic units of the 2.0–1.8 Ga (Svecokarelian) orogen, Sweden, is proposed. A repetitive cyclic tectonic evolution occurred during the time period c. 1.91–1.75 Ga, each cycle lasting about 50–55 million years. Volcanic rocks (c. 1.91–1.88 Ga) belonging to the earliest cycle are host to most of the base metal sulphide and Fe oxide deposits inside the orogen. Preservation of relict trails of continental magmatic arcs and intra-arc basins is inferred, with differences in the depth of basin deposition controlling, for example, contrasting types of base metal sulphide deposits along different trails. The segmented geometry of these continental magmatic arcs and intra-arc basins is related to strike-slip movement along ductile shear zones during transpressive events around and after 1.88 Ga; late orogenic folding also disturbed their orientation on a regional scale. A linear northwesterly orogenic trend is suggested prior to this structural overprint, the strike-slip movement being mainly parallel to the orogen. A solely accretionary orogenic model along an active margin to the continent Fennoscandia, without any trace of a terminal continent–continent collision, is preferred. Alternating retreating and advancing subduction modes that migrated progressively outboard and southwestwards in time account for the tectonic cycles.


1990 ◽  
Vol 127 (2) ◽  
pp. 101-116 ◽  
Author(s):  
U. Pognante ◽  
D. Castelli ◽  
P. Benna ◽  
G. Genovese ◽  
F. Oberli ◽  
...  

AbstractIn the High Himalayan belt of northwest India, crustal thickening linked to Palaeogene collision between India and Eurasia has led to the formation of two main crystalline tectonic units separated by the syn-metamorphic Miyar Thrust: the High Himalayan Crystallines sensu stricto (HHC) at the bottom, and the Kade Unit at the top. These units are structurally interposed between the underlying Lesser Himalaya and the very low-grade sediments of the Tibetan nappes. They consist of paragneisses, orthogneisses, minor metabasics and, chiefly in the HHC, leucogranites. The HHC registers: a polyphase metamorphism with two main stages designated as M1 and M2; a metamorphic zonation with high-temperature recrystallization and migmatization at middle structural levels and medium-temperature assemblages at upper and lower levels. In contrast, the Kade Unit underwent a low-temperature metamorphism. Rb–Sr and U–Th–Pb isotope data point to derivation of the orthogneisses from early Palaeozoic granitoids, while the leucogranites formed by anatexis of the HHC rocks and were probably emplaced during Miocene time.Most of the complicated metamorphic setting is related to polyphase tectonic stacking of the HHC with the ‘cooler’ Kade Unit and Lesser Himalaya during the Himalayan history. However, a few inconsistencies exist for a purely Himalayan age of some Ml assemblages of the HHC. As regards the crustal-derived leucogranites, the formation of a first generation mixed with quartzo-feldspathic leucosomes was possibly linked to melt-lubricated shear zones which favoured rapid crustal displacements; at upper levels they intruded during stage M2 and the latest movements along the syn-metamorphic Miyar Thrust, but before juxtaposition of the Tibetan nappes along the late- metamorphic Zanskar Fault.


Sign in / Sign up

Export Citation Format

Share Document