High injection rates decrease the probability of creating undesired, far-reaching fluid migration pathways at Cooper Basin geothermal field

Author(s):  
Elvira Battimelli ◽  
Stanisław Lasocki ◽  
Paolo Capuano

<p>Enhanced Geothermal Systems apply the pressurized fluid injection to fracture impermeable rocks to form pathways in which water circulates. The cold water under high pressure is pumped into the hot subsoil, where it heats up and returns to the surface. However, the induced fractures may coalesce into unwanted paths that allow the fluids to reach pre-existing faults, triggering major seismic events.</p><p>This work investigates the relationship between injection and a degree of disordering of sources, ZZ, at Cooper Basin geothermal field in Australia, following the methodology developed and applied to study The Geysers geothermal field case (Lasocki & Orlecka-Sikora, 2020). The parameter ZZ quantifies the potential of seismicity to build pathways for fluid migration. It is the average distance between the seismic events in the eight-dimensional parameter space consisting of three hypocentral coordinates, T- and P-axis plunges, T-axis trend, and polar and azimuthal angles in the spherical system of coordinates beginning at the open hole of an injection well. A decrease of ZZ indicates an increasing hazard of forming far-reaching migration pathways. In The Geysers case, ZZ turned out to be highly correlated with the injection rate.</p><p>Here we focus on the case of Habanero 4 well stimulation from 17 - November 30, 2012 (data access, see: IS EPOS, 2020). We processed 489 seismic events with known focal mechanisms. The events moment magnitude varies between 0.8 and 3.1.  </p><p>Our analysis shows that ZZ is significantly correlated with both the injection rate and the wellhead pressure. The higher the injection rate / the wellhead pressure was, the less probable was the creation of undesired fluid migration pathways. The Cooper Basin’s and The Geyser’s reservoir rocks are vastly different, the former – granite, the latter – greywacke sandstone, likewise the stimulation techniques applied in these two reservoirs. However, in both cases, ZZ was positively correlated with injection rate; thus, the potential to build unwanted paths for fluids was negatively correlated. These results suggest that such correlation may be a global feature of rock fracturing caused by pressurized fluid injections.</p><p><em>This work has been supported by S4CE (Science for Clean Energy) project, funded from the European Union’s Horizon 2020 - Framework Programme, under grant agreement No 764810 and by PRIN-MATISSE (20177EPPN2) project funded by Italian Ministry of Education and Research.</em></p><p> </p><p><strong>References:</strong></p><p>IS EPOS (2020), Episode: COOPER BASIN, https://tcs.ah-epos.eu/#episode:COOPER_BASIN, doi:10.25171/InstGeoph_PAS_ISEPOS-2020-001</p><p>Lasocki, S., & Orlecka-Sikora, B. (2020). High injection rates counteract formation of far-reaching fluid migration pathways at The Geysers geothermal field. Geophysical Research Letters, 47, e2019GL086212. https://doi.org/10.1029/2019GL086212</p>

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Staszek ◽  
Ł. Rudziński ◽  
G. Kwiatek

AbstractMultiplet analysis is based on the identification of seismic events with very similar waveforms which are used then to enhance seismological analysis e.g. by precise relocation of sources. In underground fluid injection conditions, it is a tool frequently used for imaging of subsurface fracture system. We identify over 150 repeatedly activated seismic sources within seismicity cluster induced by fluid injection in NW part of The Geysers geothermal field (California). Majority of multiple events (ME) occur along N–S oriented planar structure which we interpret as a fault plane. Remaining ME are distributed along structures interpreted as fractures, forming together a system of interconnected cracks enabling fluid migration. Temporal analysis reveals that during periods of relatively low fluid injection the proportion of ME to non-multiple events is higher than during periods of high injection. Moreover, ME which occur within the fault differ in activity rate and source properties from ME designating the fractures and non-multiple events. In this study we utilize observed differences between ME occurring within various structures and non-multiple events to describe hydraulic conditions within the reservoir. We show that spatial and temporal analysis of multiplets can be used for identification and characterization of dominant fluid migration paths.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2138 ◽  
Author(s):  
Zhihong Lei ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Liangzhen Li ◽  
Senqi Zhang ◽  
...  

Currently, water fracturing under deep geothermal conditions remains poorly understood because the reservoir rocks are usually high-strength crystalline rocks characterized by high temperatures. The aim of this study is to investigate the effects of rock properties, injection rates, and temperatures on hydraulic fracturing behavior and the induced crack characteristics through experimental investigations. A series of hydraulic fracturing experiments was conducted on two Indosinian granite types to investigate the differences in hydraulic fracturing behavior caused by rock properties. Among others, six samples were tested under a room-temperature condition at different injection rates from 1 to 30 mL/min to clarify the effect of the injection rate and three samples were tested under a high-temperature condition (150 °C) to simulate specific geothermal environments. The results indicated that granites with different rock properties have different injection rate thresholds. When the injection rate is below the threshold, the injection pressure finally reached a constant value without fracturing. For rocks with the same properties, the temperature effect can lead to a high injection rate threshold due to the occurrence of thermally-induced cracks. The number of acoustic emission events recorded during the room-temperature experiments increased linearly with increasing injection rate, while high-temperature tests increased sharply. The investigation results imply that a complex hydraulically-induced crack network is expected to be achieved in geothermal reservoirs by a high injection rate or high temperature differences (between injected fluid and rock). Additionally, the characteristics of the hydraulically-induced cracks were investigated by cutting through the sample blocks and measuring the residual pressure. The results indicated that the induced crack aperture can maintain a fluid conductivity of 0.1–0.8 mm/s at a closure pressure of 12 MPa.


2018 ◽  
Vol 29 (12) ◽  
pp. 1850121
Author(s):  
R. Marzoug ◽  
N. Lakouari ◽  
O. Oubram ◽  
H. Ez-Zahraouy ◽  
A. Khallouk ◽  
...  

Using the cellular automata Nagel–Schreckenberg (NaSch) model, we numerically study the impact of traffic lights on the probability of car accidents ([Formula: see text]) at the intersection of two roads. It is found that, the probability [Formula: see text] is more stable with variation of the green light ([Formula: see text]) when the symmetric lights are adopted. Moreover, simulation results show the existence of a critical time [Formula: see text], below which ([Formula: see text]) [Formula: see text] increases as the injection rate ([Formula: see text]) increases, however, above which ([Formula: see text]) the growing of [Formula: see text] has for effect the decrease of [Formula: see text]. Furthermore, the decrease of [Formula: see text] is almost always accompanied by a loss of the flux, especially with asymmetrical lights. To overcome this problem, we proposed a strategy that can greatly increase the flux and keep the probability [Formula: see text] as small as possible, especially for the low and high injection rates.


2017 ◽  
pp. 63-67
Author(s):  
L. A. Vaganov ◽  
A. Yu. Sencov ◽  
A. A. Ankudinov ◽  
N. S. Polyakova

The article presents a description of the settlement method of necessary injection rates calculation, which is depended on the injected water migration into the surrounding wells and their mutual location. On the basis of the settlement method the targeted program of geological and technical measures for regulating the work of the injection well stock was created and implemented by the example of the BV7 formation of the Uzhno-Vyintoiskoe oil field.


Sign in / Sign up

Export Citation Format

Share Document