Influences of air substances and meteorological conditions on human health

Author(s):  
Stephanie Koller ◽  
Elke Hertig ◽  
Christa Meisinger ◽  
Markus Wehler

<p><strong>Influences of air substances and meteorological conditions on human health</strong></p><p>For a long time it has been known that exceptionally strong and long-lasting heat waves have negative health effects on the population, which is expressed in an intensification of existing diseases and over-mortality of certain risk groups (Kampa, Castanas 2008). Often associated with heat are stagnant airflow conditions that cause a large increase in the concentration of certain air substances (Ebi, McGregor 2008). Many of these air substances have a strong adverse effect on the human organism (Kampa, Castanas 2008).</p><p>The aim of the project is to investigate the actual hazard potential air pollution- and climatological variables by quantifying the effects on human health of increased exposure to air constituents and temperature extremes. Different multivariate statistical methods such as correlation analysis, regression models and random forests, extreme value analysis and individual case studies are used.</p><p>As a medical data basis for this purpose, the emergency department data of the University Hospital Augsburg are regarded. In addition to the diagnosis, supplementary information such as age, gender, place of residence and pre-existing conditions of the patients are used. Among the air constituents, the focus is on ozone, nitrogen dioxide and particulate matter. In the meteorological part, the focus is primarily on temperature, which is not only a direct burden but, as in the case of ozone, also has a decisive influence on the formation of ground-level ozone. However, a large number of other meteorological parameters such as precipitation, relative humidity and wind speed as well as the synoptic situation also play a major role in the formation, decomposition process and the distribution of pollutants (Ebi, McGregor 2008).</p><p>The first major question to answer is whether air pollution and meteorological stress situations are visible in the emergency department data. Further in-depth questions are which factors have the greatest negative impact, what is the most common environment-related disease, which weather conditions carry a higher than average risk and what are the health risks of climate change.</p><p>Ideally, the analysis may also provide a short-term forecast from which to derive whether or not there will be an above or below average number of visits to the emergency department.</p><p>The project is funded by the German Federal Foundation for Environment (DBU) and the German Research Foundation (DFG) - project number 408057478.</p><p>Literature:</p><p>Nuvolone D., Petri D., Voller F. (2017): The effects of ozone on human health. doi: 10.1007/s11356-017-9239-3.</p><p>Requia W., Adams M., Arain A., Papatheodorou S., Koutrakis P., Mahmoud M. (2018): Global Association of Air Pollution and Cardiorespiratory Diseases: A Systematic Review, Meta-Analysis, and Investigation of Modifier Variables. doi: 10.2105/AJPH.2017.303839</p><p>Xing Y., Xu Y., Shi M., Lian Y. (2016): The impact of PM2.5 on the human respiratory system. doi: 10.3978/j.issn.2072-1439.2016.01.19</p><p> </p>

2020 ◽  
Author(s):  
Stephanie Koller ◽  
Christa Meisinger ◽  
Markus Wehler ◽  
Elke Hertig

<p>For a long time it has been known that exceptionally strong and long-lasting heat waves have negative health effects on the population, which is expressed in an intensification of existing diseases and over-mortality of certain risk groups (Kampa, Castanas 2008). Often associated with heat are stagnant airflow conditions that cause a large increase in the concentration of certain air substances (Ebi, McGregor 2008). Many of these air substances have a strong adverse effect on the human organism (Kampa, Castanas 2008).</p><p>The aim of the project is to investigate the actual hazard potential of health-relevant air pollution- and climatological variables by quantifying the effects on human health of increased exposure to air constituents and temperature extremes. Different multivariate statistical methods such as correlation analysis, regression models and random forests, extreme value analysis and individual case studies are used.</p><p>As a medical data basis for this purpose, the emergency department data of the University Hospital Augsburg are regarded. In addition to the diagnosis, supplementary information such as age, gender, place of residence and pre-existing conditions of the patients are used. Among the air constituents, the focus is on ozone, nitrogen dioxide and particulate matter. In the meteorological part, the focus is primarily on temperature, which is not only a direct burden but, as in the case of ozone, also has a decisive influence on the formation of ozone molecules. However, a large number of other meteorological parameters such as precipitation, relative humidity and wind speed as well as the synoptic situation also play a major role in the formation, decomposition process and the distribution of pollutants (Ebi, McGregor 2008).</p><p>The first major question to answer is whether air-pollution and meteorological stress situations are visible in the emergency department data. Further in-depth questions are which factors have the greatest negative impact, what is the most common environment-related disease, which weather conditions carry a higher than average risk and what are the health risks of climate change.</p><p>Ideally, the analysis may also provide a short-term forecast from which to derive whether or not there will be an above or below average number of visits to the emergency department.</p><p>The project is funded by the German Federal Foundation for Environment (DBU) and the German Research Foundation (DFG) - project number 408057478.</p><p>Literature</p><p>Ebi K., McGregor G. (2008): Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts. doi: 10.1289/ehp.11463</p><p>Kampa M., Castanas E. (2008): Human health effects of air pollution. In: Environmental Pollution 151(2): 362-367. doi: 10.1016/j.envpol.2007.06.012</p>


Author(s):  
Titik Istirokhatun ◽  
Ita Tetriana Agustini ◽  
Sudarno Sudarno

The  presence  of  air  pollution  in  ambient  air  is  closely  related  to  the incidence  of  adverse reactions affecting human health. One of harmful pollutants and potentially major cause health problems is sulfur dioxide (SO 2 ). The number of vehicles that are passing and queuing on the crossroads  because  of  traffic light can  affect  the  concentration  of  SO 2 .  Besides,  in  these locations  there  are a lot of road users  which  are  potentially  exposed  by  contaminants, so information about the concentration of SO 2  is important to know. This study aimed to investigate the  impact  of  meteorological  factors  and  the  number  of vehicles  on  SO 2   concentrations. Impinger was used for air sampling, and pararosaniline method was used for determining SO 2  concentration. Sampling and calculation  of the number of passing vehicles were performed 3 times ie in the morning, afternoon and evening. Based on the results of the study, the highest concentrations of SO 2  were on the range of 15-21 mg/Nm3.


2013 ◽  
Vol 77 ◽  
pp. 260-266 ◽  
Author(s):  
T.W. Smith ◽  
C.J. Axon ◽  
R.C. Darton
Keyword(s):  
The Uk ◽  

2021 ◽  
Author(s):  
Ivo Suter ◽  
Lukas Emmenegger ◽  
Dominik Brunner

<p>Reducing air pollution, which is the world's largest single environmental health risk, demands better-informed air quality policies. Consequently, multi-scale air quality models are being developed with the goal to resolve cities. One of the major challenges in such model systems is to accurately represent all large- and regional-scale processes that may critically determine the background concentration levels over a given city. This is particularly true for longer-lived species such as aerosols, for which background levels often dominate the concentration levels, even within the city. Furthermore, the heterogeneous local emissions, and complex dispersion in the city have to be considered carefully.</p><p>In this study, the impact of processes across a wide range of scales on background concentrations over Switzerland and the city of Zurich was modelled by performing one year of nested European and Swiss national COSMO-ART simulations to obtain adequate boundary conditions for gas-phase chemical, aerosol and meteorological conditions for city-resolving simulations. The regional climate chemistry model COSMO-ART (Vogel et al. 2009) was used in a 1-way coupled mode. The outer, European, domain, which was driven by chemical boundary conditions from the global MOZART model, had a 6.6 km horizontal resolution and the inner, Swiss, domain one of 2.2 km. For the city scale, a catalogue of more than 1000 mesoscale flow patterns with 100 m resolution was created with the model GRAMM, based on a discrete set of atmospheric stabilities, wind speeds and directions, accounting for the influence of land-use and topography. Finally, the flow around buildings was solved with the CFD model GRAL forced at the boundaries by GRAMM. Subsequently, Lagrangian dispersion simulations for a set of air pollutants and emission sectors (traffic, industry, ...) based on extremely detailed building and emission data was performed in GRAL. The result of this nested procedure is a library of 3-dimensional air pollution maps representative of hourly situations in Zurich (Berchet et al. 2017). From these pre-computed situations, time-series and concentration maps can be obtained by selecting situations according to observed or modelled meteorological conditions.</p><p>The results were compared to measurements from air quality monitoring network stations. Modelled concentrations of NO<sub>x</sub> and PM compared well to measurements across multiple locations, provided background conditions were considered carefully. The nested multi-scale modelling system COSMO-ART/GRAMM/GRAL can adequately reproduce local air quality and help understanding the relative contributions of local versus distant emissions, as well as fill the space between precise point measurements from monitoring sites. This information is useful for research, policy-making, and epidemiological studies particularly under the assumption that exceedingly high concentrations become more and more localised phenomenon in the future.</p>


2019 ◽  
Vol 108 ◽  
pp. 02012
Author(s):  
Małgorzata Piaskowska-Silarska ◽  
Krzysztof Pytel ◽  
Stanisław Gumuła ◽  
Wiktor Hudy

Abstract. The publication presents an assessment of the impact of meteorological conditions on air quality in a given location. The subject matter of the work is related to problem-review issues in the field of environmental protection and energy management. The publication draws attention to the fact that despite several decades of ecological monitoring of air pollution, only in recent years attention has been paid to the scale of air pollution problem. The study examined the relationship between meteorological elements (wind velocity, relative humidity on the amount of air pollution immissions. Significant impact of precipitation, atmospheric pressure and thermal braking layer was indicated. The possibilities of air quality improvement were presented based on the measurement data concerning the immission of impurities.


2019 ◽  
Vol 30 (3) ◽  
pp. 23-28
Author(s):  
Kinga Makuch

Abstract The article focuses on the selected aspects of introducing a resolution by a self-government of a province, which allows to determine the acceptable types and quality of fuels. The impact of polluted air on human health is significant. The actions carried out by the local authorities should be aimed on seeking effective air protection remedies; nonetheless, the scale of these activities seems to be still insignificant. One of the legal mechanisms is introducing resolutions determining the acceptable types and quality of fuels by a self-government of a province in order to protect the health of Polish residents and reduce the negative impact of air pollution on the environment. The question, however, is whether such resolutions could be audited with respect to the execution of such a resolution and whether they effectively lead to air quality improvement.


Author(s):  
M. P. Bogliolo ◽  
G. Contino

A GIS-based web-mapping system is presented, aimed at providing specialists, stakeholders and population with a simple, while scientifically rigorous, way to obtain information about people exposure to air pollution in the city of Rome (Italy). It combines a geo-spatial visualization with easy access to time dimension and to quantitative information. The study is part of the EXPAH (<i>Population Exposure to PAHs</i>) LIFE+ EC Project, which goal is to identify and quantify children and elderly people exposure to PM2.5-bound Polycyclic Aromatic Hydrocarbons (PAHs) in the atmosphere of Rome, and to assess the impact on human health. The core of the system is a GIS, which database contains data and results of the project research activity. They include daily indoor and outdoor ground measurements and daily maps from simulation modeling of atmospheric PAHs and PM2.5 concentration for the period June 2011-May 2012, and daily and average exposure maps. Datasets have been published as time-enabled standard OGC Web Map Services (WMS). A set of web mapping applications query the web services to produce a set of interactive and time-aware thematic maps. Finding effective ways to communicate risk for human health, and environmental determinants for it, is a topical and challenging task: the web mapping system presented is a prototype of a possible model to disseminate scientific results on these items, providing a sight into impacts of air pollution on people living and working in a big city, and shipping information about the overall exposure, its spatial pattern and levels at specific locations.


2011 ◽  
Vol 20 (1) ◽  
Author(s):  
C.Y Wright ◽  
R Oosthuizen ◽  
J John ◽  
R.M Garland ◽  
P Albers ◽  
...  

Human exposure to poor air quality is linked to adverse health effects. The largest burden of air pollution-related diseases is in developing countries where air pollution levels are also among the highest in the world. In South Africa, two geographic areas, the Vaal Triangle and the Highveld, have been identified for air quality managementinterventions to ensure compliance with National Air Quality Management Standards and to control potential harmful air pollution impacts on human health. The Highveld Priority Area (HPA) is characterised by intense mining, coal-fired power plants, industries, including iron and steel manufacturing, chemical plants, agricultural activity, motor vehicles and domestic fuel burning. Apart from two previous studies, no respiratory health studies have been carried out in the HPA. This paper describes the results of a recent, comprehensive study of ambient air quality, potential exposure to air pollution and air-related human health among a low income community living in the HPA in order to better understand the impact of air pollution on human health in South Africa.


Sign in / Sign up

Export Citation Format

Share Document