Elucidating soil moisture dynamics in agricultural landscapes under varying weather patterns

Author(s):  
Veronica Fritz ◽  
Thakshajini Thaasan ◽  
Andrew Williams ◽  
Ranjith Udawatta ◽  
Sidath Mendis ◽  
...  

<p>Changing weather patterns and anthropogenic land use change significantly alter the terrestrial water cycle. A key variable that modulates the water cycle on the land surface is soil moisture and its variability in time and space. Hydrological models are used to simulate key components of the water cycle including infiltration, soil storage and uptake by plants. However, uncertainties remain in accurately representing soil moisture dynamics in models. Here, with the aid of several sensors installed at a 30-ha experimental research facility, we attempt to quantify differences in soil water storage across multiple land use types – cropped area, mosaic of turf grass and native plants, and an unkept weeded area as control land use. We will also discuss the accuracy of sensors to correctly measure soil water storage. Our study was conducted at an agricultural experimental station in Columbia, Missouri, USA. We use a variety of instruments to measure weather, evapotranspiration, and soil water. We used boundary layer scintillometers to measure near-surface turbulence, sensors to continuously track soil moisture and temperature, as well as weather stations for precipitation, air temperature, solar radiation and wind speed.  Changes in volumetric water content and soil temperature are measured at 5-minute intervals at 10-, 20-, and 40-cm soil depths to compare soil water storage among the three land use types. We also took soil samples before and after several storm events to calibrate the sensor readings at three sites. We, then, analyzed several storm events over a period of five months and compared the actual soil moisture and soil temperature dynamics at finer time intervals. With additional measurements of weather and boundary layer turbulence, we hope to reveal the landscape and weather control on soil moisture distribution across multiple land uses, and their subsequent impact on plant water uptake. Our preliminary results indicate that continuously disturbed agricultural lands depletes soil moisture at faster rates, which may present challenges in maintaining land productivity in the long term.</p>

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Yan Liang ◽  
Shahbaz Khan ◽  
Ai-xia Ren ◽  
Wen Lin ◽  
Sumera Anwar ◽  
...  

Dryland winter wheat in the Loess Plateau is facing a yield reduction due to a shortage of soil moisture and delayed sowing time. The field experiment was conducted at Loess Plateau in Shanxi, China from 2012 to 2015, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage, Nitrogen (N) accumulation, and remobilization and yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage (0–300 cm soil depth) and increased the contribution of N translocation to grain N and grain yield (17–36%). Delaying sowing time had reduced the soil water storage at sowing and winter accumulated growing degree days by about 180 °C. The contribution of N translocation to grain yield was maximum in glume + spike followed by in leaves and minimum by stem + sheath. Moreover, there was a positive relationship between the N accumulation and translocation and the soil moisture in the 20–300 cm range. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in a dry year.


Author(s):  
Otto Corrêa Rotunno Filho ◽  
Afonso Augusto Magalhães de Araujo ◽  
Luciano Nóbrega Rodrigues Xavier ◽  
Daniel Medeiros Moreira ◽  
Rafael Carneiro Di Bello ◽  
...  

Author(s):  
Ryoko Araki ◽  
Flora Branger ◽  
Inge Wiekenkamp ◽  
Hilary McMillan

Soil moisture signatures provide a promising solution to overcome the difficulty of evaluating soil moisture dynamics in hydrologic models. Soil moisture signatures are metrics that represent catchment dynamics extracted from time series of data and enable process-based model evaluations. To date, soil moisture signatures have been tested only under limited land-use types. In this study, we explore soil moisture signatures’ ability to discriminate different dynamics among contrasting land-uses. We applied a set of nine soil moisture signatures to datasets from six in-situ soil moisture networks worldwide. The dataset covers a range of land-use types, including forested and deforested areas, shallow groundwater areas, wetlands, housing areas, grazed areas, and cropland areas. These signatures characterize soil moisture dynamics at three temporal scales: event, seasonal, and time-series scales. Statistical and visual assessment of extracted signatures showed that (1) storm event-based signatures can distinguish different dynamics for most land-uses, (2) season-based signatures are useful to distinguish different dynamics for some types of land-uses (forested vs. deforested area, greenspace vs. housing area, and deep vs. shallow groundwater area), (3) timeseries-based signatures can distinguish different dynamics for some types of land-uses (forested vs. deforested area, deep vs. shallow groundwater area, non-wetland vs. wetland area, and ungrazed vs. grazed area). We compared signature-based process interpretations against literature knowledge: event-based and time series-based signatures were generally matched well with previous process understandings from literature, but season-based signatures did not. This study demonstrates the best practices of extracting soil moisture signatures under various land-use and climate environments and applying signatures for model evaluations.


Author(s):  
Sumera Anwar ◽  
Yan Fei Liang ◽  
Shahbaz Khan ◽  
Zhi-qiang Gao

Dryland winter wheat in Loess Plateau is facing yield reduction due to shortage of soil moisture and delayed sowing time. Field experiment was conducted at Loess Plateau in Shanxi Province, China from 2012 to 2014, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage and contribution of N accumulation and remobilization to yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage at 0-300 cm depth, improved the number of tillers and pre-anthesis N translocation in various organs of wheat and post-anthesis N accumulation, eventually increased the yield up to 17-36%. Delaying sowing time had reduced the soil water storage at sowing and winter accumulated temperature by about 180˚C. The contribution of N translocation to grain yield was maximum in glume+spike followed by in leaves and minimum by stem+sheath. In addition a close relationship was found between the N accumulation and translocation and the soil moisture in the 20-300 cm. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in dry year.


Solid Earth ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 1157-1167 ◽  
Author(s):  
C. Y. Niu ◽  
A. Musa ◽  
Y. Liu

Abstract. Land use plays an important role in controlling spatial and temporal variations of soil moisture by influencing infiltration rates, runoff and evapotranspiration, which is important to crop growth and vegetation restoration in semiarid environments, such as Horqin sandy land in north China. However, few studies have been conducted comparing differences of dynamics of soil water conditions and the responses of soil to infiltration under different land use types in semiarid area. Five different land use types were selected to analyze soil moisture variations in relation to land use patterns during the growing season of 2 years. Results showed that soil moisture condition was affected by different land uses in semi-arid sandy soils. The higher soil moisture content among different land uses was exhibited by the grassland, followed by cropland, poplar land, inter-dunes and shrub land. The temporal variations of soil moisture in different land uses were not always consistent with the rainfall due to the dry sequence. Moreover, soil water at the surface, in the root zone and at the deep soil layer indicated statistical differences for different types of land cover. Meanwhile, temporal variations of soil moisture profile changed with precipitation. However, in the deep soil layer, there was a clear lag in response to precipitation. In addition, seasonal variations of profile soil moisture were classified into two types: increasing and waving types. And the stable soil water layer was at 80–120 cm. Furthermore, the infiltration depth exhibited a positive correlation with precipitation under all land uses. This study provided an insight into the implications for land and agricultural water management in this area.


2020 ◽  
Vol 13 (2) ◽  
pp. 870
Author(s):  
Thyago Rodrigues do Carmo Brito ◽  
José Romualdo De Sousa Lima ◽  
Cássio Lopes de Oliveira ◽  
Rodolfo Marcondes Silva Souza ◽  
Antonio Celso Dantas Antonino ◽  
...  

As mudanças no uso da terra podem provocar alterações no regime hídrico de várias regiões do mundo. Na região agreste de Pernambuco, essas mudanças consistem, principalmente, na retirada da Caatinga para a implantação de pastagens e culturas agrícolas. Contudo, pouco se sabe sobre o efeito dessas mudanças nos componentes do balanço hídrico. Desse modo, o objetivo do presente trabalho foi avaliar o efeito da conversão de áreas de Caatinga em áreas de pastagem nos componentes do balanço hídrico. Para isso, foram medidos, simultaneamente, o armazenamento de água no solo, os fluxos de água (drenagem e/ou ascensão capilar), o escoamento superficial e a evapotranspiração (ET) durante o período de 24 meses (outubro de 2013 a setembro de 2015), pela metodologia do balanço hídrico no solo, em áreas de Caatinga e de pastagem no município de São João-PE. Verificou-se que o armazenamento de água no solo na Caatinga foi menor que na pastagem, devido ao maior dossel e sistema radicular da Caatinga. As perdas de água por drenagem totalizaram -103,9 mm na pastagem e foram nulas na Caatinga. Em ambas as áreas a ET foi proporcional a precipitação pluvial. totalizando 1.195,6 mm com média de 1,64 mm d-1 na Caatinga e na pastagem totalizou 1.087,4 mm e 1,49 mm d-1. Conclui-se que as mudanças no uso da terra (retirada da Caatinga e implantação de pastagem) resultaram em aumento das perdas de água por drenagem e redução da evapotranspiração, que pode causar impacto no clima regional. Land Use Changes and Effects on the Water Balance Components in Agreste Pernambucano A B S T R A C TLand use changes can cause alterations in water regime in various regions of the world. In the Agreste region of Pernambuco, these changes consist mainly of the removal of Caatinga for the implantation of grassland and crops. However, little is known about the effect of these changes on water balance components. Thus, the objective of the present study was to evaluate the effect of the conversion of Caatinga areas into grassland in the water balance components. For this, we measured simultaneously the soil water storage, water fluxes (drainage and / or capillary rise), runoff and evapotranspiration (ET) over a 24-month period (October 2013 to September 2015), by the soil water balance method in Caatinga and grassland areas in São João-PE. It was found that the soil water storage in Caatinga was lower than in the grassland, due to the higher canopy and root system of the Caatinga. Water losses, via drainage, totaled -103.9 mm in the grassland and were zero in the Caatinga. In both areas, ET was proportional to rainfall, totaling 1,195.6 mm with an average of 1.64 mm d-1 in the Caatinga and in the grassland totaled 1,087.4 mm and 1.49 mm d-1. It concludes that land use changes (i.e., the conversion of Caatinga areas into grassland) resulted in increased losses of drainage and reduced evapotranspiration, which can impact on regional climate.Key words: Caatinga; grassland; evapotranspiration; soil water content.


2020 ◽  
Vol 8 (2) ◽  
pp. 2601-2610
Author(s):  
Buhari Umasugi ◽  
Sugeng Prijono ◽  
S Soemarno ◽  
A Ariffin

The biopore infiltration hole with organic material litter can increase the soil capacity to accommodate and store soil moisture. This study was aimed to determine the effect of biopores and organic material litter on soil moisture storage and the relationship of climatic conditions on soil moisture storage. The experiment was carried out on clove plantations on Ternate Island, North Maluku from December 2018 to February 2019. This study used a factorial randomized block design. The first factor was the biopores with a depth of 50 cm and 90 cm, and the second factor was 4 types of organic material litters in the form of nutmeg leaves, clove leaves, Guinea grass leaves and a mixture of clove leaves and Guinea grass. The factors observed were total soil water storage and at depths of 0-20, 20-40, 40-60 and 60-80 cm; organic matter content; C/N ratio and soil total N. Data analysis used the GenStat program with analysis of variance test (ANOVA) and Duncan's Multiple Distance Test. Results of the study showed that evaporation and percolation are climatic factors that affect water loss. Increase in soil water storage at 20-40 cm soil depth of 107.56 mm was yielded by the treatment of 50 cm biopore and Guinea grass leaf litter but it was not significantly different from the 50 cm biopore and clove leaf litter + chicken manure treatment. The treatment of biopore and organic material litter also increased the organic matter and soil total N and decreased the soil C/N ratio, but it did not have a significant effect.


Soil Research ◽  
1989 ◽  
Vol 27 (2) ◽  
pp. 471
Author(s):  
J Brouwer

For those involved with evaluating the effects on the water balance of changes in land use, it is always interesting and pleasing to see a report on a study involving paired catchments. One such report was presented by Prebble and Stirk (1988). From their study, Prebble and Stirk concluded that the killing of trees and establishment of improved pasture in an open grassy woodland did not affect evapotranspiration. While this result was not quite what they expected, they thought it could be explained by the fact that the killing of the trees resulted in an increase in wind run and in radiation to the grass. This in turn would have increased evapotranspiration from the grass, which would have compensated for the reduction in interception and evapotranspiration by the trees. This explanation, to some extent, ignores the observed increase in average soil water storage following the death of the trees. Perhaps, then, the answer to this water balance problem lies not in the evapotranspiration term, but in the increased soil water storage and associated increased deep drainage.


Sign in / Sign up

Export Citation Format

Share Document