Spatial variability in Karoo dolerites

Author(s):  
Arnold Kotze ◽  
R. James Roberts

<p>AD Kotze and RJ Roberts</p><p>Department of Geology, University of Pretoria, Hatfield, Pretoria, South Africa; [email protected]</p><p>The Karoo Large Igneous Province (KLIP) in South Africa consists of both a spatially limited extrusive basalt suite (Drakensberg Group) and a spatially extensive dolerite suite, both generally considered to be remarkable homogenous and of a “low-Ti” character (Luttinen, 2018). The homogeneity of the rocks requires that statistical analysis is necessary to look for spatial and geochemical trends in the data, which may yield clues to the mantle processes producing the 60 000 km<sup>2</sup> expanse of basaltic magma. In this project, data derived from several locations are used as proxies to check for lateral variability in the Karoo dolerites. A principal component analysis (PCA) on trace element data using a covariance matrix was performed, and comparisons based on variables that are 1) common to the Karoo dolerites and Lesotho basalts and, 2) responsible for the most amount of variation to the data set are made. Trace element modelling is then used to test different mantle melting scenarios possibly responsible for the variation seen in the dolerites.</p><p>Principal component analyses revealed several trace elements are responsible for most of the variability in the dolerites. Cr and Ni has the strongest positive loading on Component 1 whereas Cr and Ba has the strongest positive loading on Component 2. Ba has a strong negative loading on Component 1. Cu, Sr, V and Zr do impart an appreciable amount of variation to the data, but all four variables have weak negative loadings on both components. Interestingly, the activity of Cu and V seems to be the inverse of that of Cr and Ni.</p><p>Due to the nature of a PCA, this work is afforded an opportunity to place the geochemistry of the Karoo dolerites within a larger geodynamic context without bias. From the observed variation, the activity of Ba and Cr is interpreted as an assimilation-oxidation process, whereas the Ni signature reflects the mantle origin of the magmas. Further modelling of these processes will allow the testing of suggested mechanisms for the formation of the KLIP, especially whether the magmatism is plume-related or related to the foundering of crustal blocks.</p><p>Luttinen, A., 2018. Bilateral geochemical asymmetry in the Karoo large igneous province. Scientific Reports, 8(5223).</p>

2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


2021 ◽  
pp. SP518-2020-253
Author(s):  
Thuy Thanh Pham ◽  
J. Gregory Shellnutt ◽  
Tuan-Anh Tran ◽  
Steven W. Denyszyn ◽  
Yoshiyuki Iizuka

AbstractThe Permian silicic rocks in the Phan Si Pan (PSP) uplift area and Tu Le (TL) basin of NW Vietnam (collectively the PSP-TL region) are associated with the Emeishan Large Igneous Province (ELIP). The Permian Muong Hum, Phu Sa Phin, and Nam Xe - Tam Duong granites, and Tu Le rhyolites are alkali ferroan A1-type granitic rocks, which likely formed by fractional crystallization of high-Ti basaltic magma that was contaminated by melts derived from the Neoproterozoic host rocks. Zircon U-Pb LA-ICP-MS geochronology yielded weighted-mean 206Pb/238U ages of 246 ± 3 Ma to 259 ± 3 Ma for granites, and 249 ± 3 Ma and 254 ± 2 Ma for rhyolites. This is contrasted with previously-published high precision U-Pb ages, obtained using CA-ID-TIMS method applied on the same zircon grains, which suggest that the calculated LA-ICP-MS U-Pb ages are variably inaccurate by up to 10 Ma, though at the single-grain level dates generally agree within uncertainty. The similarity of rock texture, whole-rock geochemistry, emplacement ages, and fractionation phases between the PSP-TL region and silicic rocks in the Inner Zone ELIP (i.e., Panzhihua, Binchuan) suggests they were spatially proximal before being sinistrally displaced along the Ailao Shan-Red River shear zone.


2008 ◽  
Vol 145 (3) ◽  
pp. 373-388 ◽  
Author(s):  
J. GREGORY SHELLNUTT ◽  
MEI-FU ZHOU ◽  
DAN-PING YAN ◽  
YANBIN WANG

AbstractAfter the formation of the ~ 260 Ma Emeishan large igneous province, there were two volumetrically minor magmatic pulses at ~ 252 Ma and ~ 242 Ma, respectively. Alkaline mafic dykes intruding both 260 Ma and 252 Ma felsic plutons in the Panxi region, southwestern China, have compositions similar to the Emeishan flood basalts. One dyke is dated using the SHRIMP zircon U–Pb technique at 242 ± 2 Ma, ~ 18 Ma younger than the start of Emeishan magmatism. The dykes have enriched light rare earth element patterns (La/YbN = 4.4–18.8) and trace element patterns similar to the Emeishan flood basalts and average ocean-island basalts. Some trace element ratios of the dykes (Zr/Nb = 3.8–8.2, La/Nb = 0.4–1.7, Ba/La = 7.5–25.6) are somewhat similar to EM1 source material, however, there are differences. Their εNd values (εNd = +2.6 and +2.7) andISr (ISr = 0.704542 and 0.704554) ratios are indicative of a mantle source. Thus Emeishan magmatism may have lasted for almost 20 Ma after the initial eruption. However, geological evidence precludes the possibility that the post-260 Ma magmatic events were directly related to Emeishan magmatism, which began at and ended shortly after 260 Ma. The 252 Ma plutons and 242 Ma dykes represent volumetrically minor melting of the fossil Emeishan plume-head beneath the Yangtze crust. The 252 Ma magmatic event was likely caused by post-flood basalt extension of the Yangtze crust, whereas the 242 Ma event was caused by decompressional melting associated with the collision between the South China and North China blocks during the Middle Triassic.


2011 ◽  
Vol 52 (5) ◽  
pp. 959-984 ◽  
Author(s):  
Else-Ragnhild Neumann ◽  
Henrik Svensen ◽  
Christophe Y. Galerne ◽  
Sverre Planke

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 634
Author(s):  
Shitou Wu ◽  
Yadong Wu ◽  
Yueheng Yang ◽  
Hao Wang ◽  
Chao Huang ◽  
...  

Olivine forsterite contents [Fo = 100 × Mg/(Mg + Fe) in mol%] and minor–trace element concentrations can aid our understanding of the Earth’s mantle. Traditionally, these data are obtained by electron probe microanalysis for Fo contents and minor elements, and then by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) for trace elements. In this study, we demonstrate that LA–ICP–MS, with a simplified 100% quantification approach, allows the calculation of Fo contents simultaneously with minor–trace elements. The approach proceeds as follows: (1) calculation of Fo contents from measured Fe/Mg ratios; (2) according to the olivine stoichiometric formula [(Mg, Fe)2SiO4] and known Fo contents, contents of Mg, Fe and Si can be computed, which are used as internal standards for minor–trace element quantification. The Fo content of the MongOLSh 11-2 olivine reference material is 89.55 ± 0.15 (2 s; N = 120), which agrees with the recommended values of 89.53 ± 0.05 (2 s). For minor–trace elements, the results matched well with the recommended values, apart from P and Zn data. This technique was applied to olivine phenocrysts in the Lijiang picrites from the Emeishan large igneous province. The olivine compositions suggest that the Lijiang picrites have a peridotitic mantle source.


2007 ◽  
Vol 48 (6) ◽  
pp. 1043-1077 ◽  
Author(s):  
F. Jourdan ◽  
H. Bertrand ◽  
U. Schärer ◽  
J. Blichert-Toft ◽  
G. Féraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document