The effect of biochar amendment on chlorinated phenols retention in alluvial sediments during river bank filtration

Author(s):  
Tamara Apostolović ◽  
Jelena Tričković ◽  
Marijana Kragulj Isakovski ◽  
Snežana Maletić ◽  
Tijana Zeremski ◽  
...  

<p>Amendment of alluvial sediments with carbon rich materials such as biochars can be an effective method for controlling the penetration of hazardous substances from river water into drinking water sources during river bank filtration (RBF). In this work, the transport of chlorinated phenols (CPs) during simulated RBF through Danube alluvial sediment with and without biochar amendment was studied. In order to assess the effect of the biochar amendment on CPs retention in the alluvial sediment, column experiments were carried out, with the addition of biocide to exclude the influence of biodegradation. Four CPs that differ in polarity were used as sorbates: 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). For the column packing, Danube alluvial sediment was used, characterized as a mesoporous sandy material with low organic carbon content (1.57 %) and small specific surface area (1.65 m<sup>2</sup>/g). In contrast, the material used as the amendment in the column experiment is a biochar with high organic carbon content (89.8 %) and large specific surface area (341 m<sup>2</sup>/g). The breakthrough curves obtained for the alluvial sediment column without biochar amendment showed poor retention of all investigated CPs. Retardation factors (<em>R</em><sub>d</sub>) for 4-CP, 2,4-DCP and 2,4,6-TCP were 1.65, 1.98 and 1.48, respectively, whereas for PCP, <em>R</em><sub>d</sub> was somewhat higher (4.28) most likely due to the fact that it’s nonpolar nature greatly affects its distribution between the solid and aqueous phase. The addition of biochar into the alluvial sediment at a 0.5 % mass ratio significantly increased the retardation of all investigated CPs. The obtained <em>R</em><sub>d</sub> values for 4-CP, 2,4-DCP, 2,4,6-TCP and PCP were 102, 83, 78 and 92, respectively. The general increase in retardation of all investigated CPs can be explained by the increase of organic carbon content in the alluvial sediment by the addition of biochar, which is known to be the main fraction for organic components sorption in sediments and soils. In addition, the enhanced affinity of the alluvial sediment to retain the more polar CPs after biochar amendment indicates that sorption is carried out not only through nonpolar interactions, but also by electrostatic interactions between the CPs and functional groups on the surface of the biochar. The results show that biochar amendment of alluvial sediments could have a great potential for organic contaminants retention in the RBF zone, thus decreasing the risk of groundwater and drinking water sources contamination.</p><p><strong>Acknowledgement: </strong>The authors acknowledge financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ‪451-03-68/‪2020-14/ 200125). The authors want to express their gratitude to Basna d.o.o. Čačak for providing the biochar.</p>

1985 ◽  
Vol 17 (9) ◽  
pp. 39-55 ◽  
Author(s):  
R. P. Schwarzenbach ◽  
J. Westall

Factors influencing the subsurface sorption behavior of neutral and ionizable trace organic compounds are discussed. At equilibrium, the sorption of a neutral hydrophobic organic compound can be expressed by a simple partition coefficient. Partition coefficients, and thus retardation factors, may be estimated from the octanol/water partition coefficient of the compound and the organic carbon content of the aquifer material, if the organic carbon content exceeds 0.1%. For ionizable (anionic) hydrophobic compounds (represented by chlorinated phenols), the distribution ratio depends on both the pH and ionic strength of the aqueous phase, in contrast to the partitioning model for neutral compounds in which the composition of the aqueous phase is relatively unimportant.


2021 ◽  
Vol 24 ◽  
pp. e00367
Author(s):  
Patrick Filippi ◽  
Stephen R. Cattle ◽  
Matthew J. Pringle ◽  
Thomas F.A. Bishop

Author(s):  
Emmanuelle Vaudour ◽  
Cécile Gomez ◽  
Philippe Lagacherie ◽  
Thomas Loiseau ◽  
Nicolas Baghdadi ◽  
...  

2021 ◽  
Author(s):  
Christoph Rosinger ◽  
Michael Bonkowski

AbstractFreeze–thaw (FT) events exert a great physiological stress on the soil microbial community and thus significantly impact soil biogeochemical processes. Studies often show ambiguous and contradicting results, because a multitude of environmental factors affect biogeochemical responses to FT. Thus, a better understanding of the factors driving and regulating microbial responses to FT events is required. Soil chronosequences allow more focused comparisons among soils with initially similar start conditions. We therefore exposed four soils with contrasting organic carbon contents and opposing soil age (i.e., years after restoration) from a postmining agricultural chronosequence to three consecutive FT events and evaluated soil biochgeoemical responses after thawing. The major microbial biomass carbon losses occurred after the first FT event, while microbial biomass N decreased more steadily with subsequent FT cycles. This led to an immediate and lasting decoupling of microbial biomass carbon:nitrogen stoichiometry. After the first FT event, basal respiration and the metabolic quotient (i.e., respiration per microbial biomass unit) were above pre-freezing values and thereafter decreased with subsequent FT cycles, demonstrating initially high dissimilatory carbon losses and less and less microbial metabolic activity with each iterative FT cycle. As a consequence, dissolved organic carbon and total dissolved nitrogen increased in soil solution after the first FT event, while a substantial part of the liberated nitrogen was likely lost through gaseous emissions. Overall, high-carbon soils were more vulnerable to microbial biomass losses than low-carbon soils. Surprisingly, soil age explained more variation in soil chemical and microbial responses than soil organic carbon content. Further studies are needed to dissect the factors associated with soil age and its influence on soil biochemical responses to FT events.


Sign in / Sign up

Export Citation Format

Share Document