Predicting the Antarctic sea level contribution to sea level rise with emulation

Author(s):  
Fiona Turner ◽  
Tamsin Edwards ◽  

<p>The Antarctic ice sheet has the potential to be a major contributor to future global sea level rise, but this has been difficult to predict, in part due to the combination of expected ice mass loss and snowfall accumulation. A great deal of uncertainty arises from the large variation of atmospheric and oceanic changes across climate models, and sensitivity to ocean changes across ice sheet models, but these uncertainties cannot be fully sampled because the models are too computationally expensive.</p><p>Here we make projections of Antarctica’s contribution to global sea level rise based on the simulations of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). Using a Gaussian process emulator, a statistical approximation of expensive computer models, we estimate probability distributions by sampling uncertainties in future climate and ice sheet sensitivity to ocean warming far more thoroughly than the original ISMIP6 ensemble could. We find a sea level contribution of 4 cm (5<sup>th</sup>-95th percentile range -5 to 14 cm) sea level equivalent by 2100 under current emissions policies, increasing to 21 cm (5<sup>th</sup>-95th percentile range 7 to 43 cm) if we use the subset of climate models, ice sheet models and ice sheet/ocean sensitivity values that lead to the highest sea level contributions.</p><p>We then compare the output from this emulator to a linear mixed model emulator, which  incorporates a random effect to represent the variation arising from different ice sheet models. We do this for all three Antarctic regions (West and East Antarctica, and the Peninsula) under two greenhouse emissions scenarios (SSP1-26 and SSP5-85). Both methods produce similar probability distributions of sea level contribution in 2100, demonstrating that differences in statistical models are not dominating the results.</p>

2015 ◽  
Vol 1 (8) ◽  
pp. e1500589 ◽  
Author(s):  
Ricarda Winkelmann ◽  
Anders Levermann ◽  
Andy Ridgwell ◽  
Ken Caldeira

The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.


2020 ◽  
Author(s):  
Samuel Helsen ◽  
Sam Vanden Broucke ◽  
Alexandra Gossart ◽  
Niels Souverijns ◽  
Nicole van Lipzig

<p>The Totten glacier is a highly dynamic outlet glacier, situated in E-Antarctica, that contains a potential sea level rise of about 3.5 meters. During recent years, this area has been influenced by sub-shelf intrusion of warm ocean currents, contributing to higher basal melt rates. Moreover, most of the ice over this area is grounded below sea level, which makes the ice shelf potentially vulnerable to the marine ice sheet instability mechanism. It is expected that, as a result of climate change, the latter mechanisms may contribute to significant ice losses in this region within the next decades, thereby contributing to future sea level rise. Up to now, most studies have been focusing on sub-shelf melt rates and the influence of the ocean, with much less attention for atmospheric processes (often ignored), which also play a key-role in determining the climatic conditions over this region. For example: surface melt is important because it contributes to hydrofracturing, a process that may lead to ice cliff instabilities. Also precipitation is an important atmospheric process, since it determines the input of mass to the ice sheet and contributes directly to the surface mass balance. In order to perform detailed studies on these processes, we need a well-evaluated climate model that represents all these processes well. Recently, the COSMO-CLM<sup>2</sup> (CCLM<sup>2</sup>) model was adapted to the climatological conditions over Antarctica. The model was evaluated by comparing a 30 year Antarctic-wide hindcast run (1986-2016) at 25 km resolution with meteorological observational products (Souverijns et al., 2019). It was shown that the model performance is comparable to other state-of-the-art regional climate models over the Antarctic region. We now applied the CCLM<sup>2</sup> model in a regional configuration over the Totten glacier area (E-Antarctica) at 5 km resolution and evaluated its performance over this region by comparing it to climatological observations from different stations. We show that the performance for temperature in the high resolution run is comparable to the performance of the Antarctic-wide run. Precipitation is, however, overestimated in the high-resolution run, especially over dome structures (Law-Dome). Therefore, we applied an orographic smoothening, which clearly improves the precipitation pattern with respect to observations. Wind speed is overestimated in some places, which is solved by increasing the surface roughness. This research frames in the context of the PARAMOUR project. Within PARAMOUR, CCLM<sup>2 </sup>is currently being coupled to an ocean model (NEMO) and an ice sheet model (f.ETISh/BISICLES) in order to understand decadal predictability over this region.</p>


2020 ◽  
Vol 11 (4) ◽  
pp. 953-976
Author(s):  
Jonas Van Breedam ◽  
Heiko Goelzer ◽  
Philippe Huybrechts

Abstract. The emphasis for informing policy makers on future sea-level rise has been on projections by the end of the 21st century. However, due to the long lifetime of atmospheric CO2, the thermal inertia of the climate system and the slow equilibration of the ice sheets, global sea level will continue to rise on a multi-millennial timescale even when anthropogenic CO2 emissions cease completely during the coming decades to centuries. Here we present global sea-level change projections due to the melting of land ice combined with steric sea effects during the next 10 000 years calculated in a fully interactive way with the Earth system model of intermediate complexity LOVECLIMv1.3. The greenhouse forcing is based on the Extended Concentration Pathways defined until 2300 CE with no carbon dioxide emissions thereafter, equivalent to a cumulative CO2 release of between 460 and 5300 GtC. We performed one additional experiment for the highest-forcing scenario with the inclusion of a methane emission feedback where methane is slowly released due to a strong increase in surface and oceanic temperatures. After 10 000 years, the sea-level change rate drops below 0.05 m per century and a semi-equilibrated state is reached. The Greenland ice sheet is found to nearly disappear for all forcing scenarios. The Antarctic ice sheet contributes only about 1.6 m to sea level for the lowest forcing scenario with a limited retreat of the grounding line in West Antarctica. For the higher-forcing scenarios, the marine basins of the East Antarctic Ice Sheet also become ice free, resulting in a sea-level rise of up to 27 m. The global mean sea-level change after 10 000 years ranges from 9.2 to more than 37 m. For the highest-forcing scenario, the model uncertainty does not exclude the complete melting of the Antarctic ice sheet during the next 10 000 years.


2020 ◽  
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas

Abstract. Of primary societal importance, the ice sheet contribution to global sea level rise over the 21st century remains largely uncertain. In particular, the contribution of the Antarctic ice sheet by 2100 ranges from a few millimetres to more than one metre in the recent literature. The Ice Sheet Model Intercomparison Project for CMIP6 aimed at reducing the uncertainties on the fate of the ice sheets in the future by gathering various ice sheet models in a common framework. While in a companion paper we present the GRISLI-LSCE contribution to ISMIP6-Greenland, we present here the GRISLI-LSCE contribution to ISMIP6-Antarctica. We show that our model is strongly sensitive to the climate forcing used, with a contribution of the Antarctic ice sheet to global sea level rise by 2100 that ranges from −50 mm to +150 mm of sea level equivalent. Future oceanic warming leads to a decrease in thickness of the ice shelves and implies grounding line retreats while increased precipitation partially mitigates the ice sheet contribution to global sea level rise. Most of ice sheet changes over the next century are dampened under low greenhouse gas emission scenarios. Uncertainties related to sub-shelf basal melt induce large differences in simulated grounding line retreats, confirming the importance of this process and its representation in ice sheet models for the projections of the Antarctic ice sheet.


2015 ◽  
Vol 61 (230) ◽  
pp. 1019-1036 ◽  
Author(s):  
H. Jay Zwally ◽  
Jun Li ◽  
John W. Robbins ◽  
Jack L. Saba ◽  
Donghui Yi ◽  
...  

AbstractMass changes of the Antarctic ice sheet impact sea-level rise as climate changes, but recent rates have been uncertain. Ice, Cloud and land Elevation Satellite (ICESat) data (2003–08) show mass gains from snow accumulation exceeded discharge losses by 82 ± 25 Gt a−1, reducing global sea-level rise by 0.23 mm a−1. European Remote-sensing Satellite (ERS) data (1992–2001) give a similar gain of 112 61 Gt a−1. Gains of 136 Gt a−1 in East Antarctica (EA) and 72 Gt a−1 in four drainage systems (WA2) in West Antarctic (WA) exceed losses of 97 Gt a−1 from three coastal drainage systems (WA1) and 29 Gt a−1 from the Antarctic Peninsula (AP). EA dynamic thickening of 147 Gt a−1 is a continuing response to increased accumulation (>50%) since the early Holocene. Recent accumulation loss of 11 Gt a−1 in EA indicates thickening is not from contemporaneous snowfall increases. Similarly, the WA2 gain is mainly (60 Gt a−1) dynamic thickening. In WA1 and the AP, increased losses of 66 ± 16 Gt a−1 from increased dynamic thinning from accelerating glaciers are 50% offset by greater WA snowfall. The decadal increase in dynamic thinning in WA1 and the AP is approximately one-third of the long-term dynamic thickening in EA and WA2, which should buffer additional dynamic thinning for decades.


2021 ◽  
Author(s):  
Matthew Cooper ◽  
Laurence Smith ◽  
Åsa Rennermalm ◽  
Kang Yang ◽  
Glen Liston ◽  
...  

Abstract The Greenland Ice Sheet’s contribution to global sea-level rise is accelerating1 due to increased melting of its bare-ice ablation zone2–6, but there is growing evidence that climate models overestimate runoff from this critical area of the ice sheet7–12. Current climate models assume all bare ice runoff escapes to the ocean, unlike snow covered areas where some fraction of runoff is retained and/or refrozen in porous firn13–15. Here we use in situ measurements and numerical modeling to reveal extensive retention and refreezing of liquid meltwater in bare glacial ice, explaining chronic runoff overestimation by climate models. From 2009–2018, refreezing of liquid meltwater in bare, porous glacial ice reduced meltwater runoff by 11–23 Gt a-1 in southwest Greenland alone, equivalent to 10–20% of annual meltwater production. This mass retention is commensurate with current estimates of climate model ice sheet meltwater runoff uncertainty, and may represent an overlooked buffer on projected runoff increases for the coming century16. Inclusion of bare-ice retention and refreezing processes in climate models therefore has immediate potential to improve forecasts of ice sheet runoff and its contribution to global sea-level rise.


2021 ◽  
Vol 15 (2) ◽  
pp. 1031-1052
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas

Abstract. The Antarctic ice sheet's contribution to global sea level rise over the 21st century is of primary societal importance and remains largely uncertain as of yet. In particular, in the recent literature, the contribution of the Antarctic ice sheet by 2100 can be negative (sea level fall) by a few centimetres or positive (sea level rise), with some estimates above 1 m. The Ice Sheet Model Intercomparison Project for the Coupled Model Intercomparison Project – phase 6 (ISMIP6) aimed at reducing the uncertainties in the fate of the ice sheets in the future by gathering various ice sheet models in a common framework. Here, we present the GRISLI-LSCE (Grenoble Ice Sheet and Land Ice model of the Laboratoire des Sciences du Climat et de l'Environnement) contribution to ISMIP6-Antarctica. We show that our model is strongly sensitive to the climate forcing used, with a contribution of the Antarctic ice sheet to global sea level rise by 2100 that ranges from −50 to +150 mm sea level equivalent (SLE). Future oceanic warming leads to a decrease in thickness of the ice shelves, resulting in grounding-line retreat, while increased surface mass balance partially mitigates or even overcompensates the dynamic ice sheet contribution to global sea level rise. Most of the ice sheet changes over the next century are dampened under low-greenhouse-gas-emission scenarios. Uncertainties related to sub-ice-shelf melt rates induce large differences in simulated grounding-line retreat, confirming the importance of this process and its representation in ice sheet models for projections of the Antarctic ice sheet's evolution.


2021 ◽  
Author(s):  
Tamsin Edwards ◽  

<p><strong>The land ice contribution to global mean sea level rise has not yet been predicted with ice sheet and glacier models for the latest set of socio-economic scenarios (SSPs), nor with coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects (ISMIP6 and GlacierMIP) generated a large suite of projections using multiple models, but mostly used previous generation scenarios and climate models, and could not fully explore known uncertainties. </strong></p><p><strong>Here we estimate probability distributions for these projections for the SSPs using Gaussian Process emulation of the ice sheet and glacier model ensembles. We model the sea level contribution as a function of global mean surface air temperature forcing and (for the ice sheets) model parameters, with the 'nugget' allowing for multi-model structural uncertainty. Approximate independence of ice sheet and glacier models is assumed, because a given model responds very differently under different setups (such as initialisation). </strong></p><p><strong>We find that limiting global warming to 1.5</strong>°<strong>C </strong><strong>would halve the land ice contribution to 21<sup>st</sup> century </strong><strong>sea level rise</strong><strong>, relative to current emissions pledges: t</strong><strong>he median decreases from 25 to 13 cm sea level equivalent (SLE) by 2100. However, the Antarctic contribution does not show a clear response to emissions scenario, due to competing processes of increasing ice loss and snowfall accumulation in a warming climate. </strong></p><p><strong>However, under risk-averse (pessimistic) assumptions for climate and Antarctic ice sheet model selection and ice sheet model parameter values, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 cm SLE under current policies and pledges, with the 95<sup>th</sup> percentile exceeding half a metre even under 1.5</strong>°<strong>C warming. </strong></p><p><strong>Gaussian Process emulation can therefore be a powerful tool for estimating probability density functions from multi-model ensembles and testing the sensitivity of the results to assumptions.</strong></p>


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


Sign in / Sign up

Export Citation Format

Share Document