Seismic quality factor measured for compressional and shear waves in the firn column of Korff Ice Rise, West Antarctica

Author(s):  
Ronan Agnew ◽  
Roger Clark ◽  
Adam Booth ◽  
Alex Brisbourne

<p><span>Comprehensive descriptions of the seismic properties of glaciers and ice masses require that both compressional (P-) and shear (S-) wave components are considered. Among these properties is the seismic attenuation, expressed by the Quality Factor (Q). Q is valuable for two reasons: first, to correct measurements of seismic amplitude for wavelet propagation effects, as in reflection amplitude-versus-angle (AVA) studies. Second, Q is an indicator of ice properties such as temperature and impurity content, and laboratory/field studies of soils and geological materials suggests that the ratio of the compressional- and shear-wave quality factors, Qp/Qs, may indicate fluid saturation (particularly when considered jointly with the velocity ratio Vp/Vs). Thus, a measurement of Qp/Qs could usefully inform the hydrological structure of the firn and indicate variations in the density of the firn column. </span></p><p><span>Despite its importance, few studies appear to have measured Qp in firn columns and none appear to have measured Qs in firn. Doing so for either compressional- or shear-wave arrivals is challenging, due to the ray paths followed by the diving wave first arrivals and their accurate representation in attenuation measurement methods. In preparation for an AVA study of bed properties at Korff Ice Rise, West Antarctica, we have used spectra of diving wave first arrivals and a modified spectral-ratio method to measure Qp and Qs as a function of depth in the firn column. Shot gathers with vertically oriented geophones at offsets of 2.5 - 1000m were used to measure Qp. For detecting the shear component, the geophones were oriented horizontally; in this configuration, diving and reflected shear phases were recorded with high signal-to-noise ratios. The variation of Q with depth is represented as discrete constant-Q layers with thicknesses between 6 and 27 m. Qp shows progressive increases in depth from 21 ± 3 in the uppermost 20 m (where Vp < </span><span>30</span><span>00 m/s), to 246 ± 30 between 74 and 80 m depth (3750 m/s < Vp < 3770 m/s). Qs increases from 14 ± 4 in the uppermost 20m, to 80 ± 6 between 80 and 90m depth. The ratio Qp/Qs varies throughout the depths measured, from Qp/Qs ~ 1.5 at the surface, to Qp/Qs ~ 3 at 80 m.</span><span> This is broadly consistent with previously quoted values, but the variation may imply that Qp/Qs is influenced by firn structure.<br></span></p><p><span>Similar measurements at a variety of sites could help to inform a relationship between Qp, Qs and firn properties. In the immediate future, the measurement of Q in the firn will aid measurements of bed reflectivity, and help to determine the material properties of the ice-bed interface.</span></p>

2019 ◽  
Vol 167 ◽  
pp. 33-41 ◽  
Author(s):  
Pardeep Sangwan ◽  
Dinesh Kumar ◽  
Subrata Chakraborty ◽  
Vidya Mundayat ◽  
M.K. Balasubramaniam

2020 ◽  
Vol 8 (4) ◽  
pp. SP43-SP52
Author(s):  
Mengqiang Pang ◽  
Jing Ba ◽  
Li-Yun Fu ◽  
José M. Carcione ◽  
Uti I. Markus ◽  
...  

Carbonate reservoirs in the S area of the Tarim Basin (China) are ultradeep hydrocarbon resources, with low porosity, complex fracture systems, and dissolved pores. Microfracturing is a key factor of reservoir connectivity and storage space. We have performed measurements on limestone samples, under different confining pressures, and we used the self-consistent approximation model and the Biot-Rayleigh theory of double porosity to study the microfractures. We have computed the fluid properties (mainly oil) as a function of temperature and pressure. Using the dependence of seismic [Formula: see text] on the microfractures, a multiscale 3D rock-physics template (RPT) is built, based on the attenuation, P-wave impedance, and phase velocity ratio. We estimate the ultrasonic and seismic attenuation with the spectral-ratio method and the improved frequency-shift method, respectively. Then, calibration of the RPTs is performed at ultrasonic and seismic frequencies. We use the RPTs to estimate the total and microfracture porosities. The results indicate that the total porosity is low and the microfracture porosity is relatively high, which is consistent with the well log data and actual oil production reports. This work presents a method for identification of deep carbonate reservoirs by using the microfracture porosity estimated from the 3D RPT, which could be exploited in oil and gas exploration.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. V329-V343
Author(s):  
Ya-Juan Xue ◽  
Jun-Xing Cao ◽  
Xing-Jian Wang ◽  
Hao-Kun Du

Seismic attenuation as represented by the seismic quality factor [Formula: see text] has a substantial impact on seismic reflection data. To effectively eliminate the interference of reflection coefficients for [Formula: see text] estimation, a new method is proposed based on the stationary convolutional model of a seismic trace using variational mode decomposition (VMD). VMD is conducted on the logarithmic spectra extracted from the time-frequency distribution of the seismic reflection data generated from the generalized S transform. For the intrinsic mode functions after VMD, mutual information and correlation analysis are used to reconstruct the signals, which effectively eliminates the influence of the reflection coefficients. The difference between the two reconstructed logarithmic spectra within the selected frequency band produces a better linear property, and it is more suitably approximated with the linear function compared to the conventional spectral-ratio method. Least-squares fitting is finally applied for [Formula: see text] estimation. Application of this method to synthetic and real data examples demonstrates the stabilization and accuracy for [Formula: see text] estimation.


2013 ◽  
Vol 54 (64) ◽  
pp. 105-114 ◽  
Author(s):  
S.R. Harland ◽  
J.-M. Kendall ◽  
G.W. Stuart ◽  
G.E. Lloyd ◽  
A.F. Baird ◽  
...  

Abstract Ice streams provide major drainage pathways for the Antarctic ice sheet. The stress distribution and style of flow in such ice streams produce elastic and rheological anisotropy, which informs ice-flow modelling as to how ice masses respond to external changes such as global warming. Here we analyse elastic anisotropy in Rutford Ice Stream, West Antarctica, using observations of shear-wave splitting from three-component icequake seismograms to characterize ice deformation via crystal-preferred orientation. Over 110 high-quality measurements are made on 41 events recorded at five stations deployed temporarily near the ice-stream grounding line. To the best of our knowledge, this is the first well-documented observation of shear-wave splitting from Antarctic icequakes. The magnitude of the splitting ranges from 2 to 80 ms and suggests a maximum of 6% shear-wave splitting. The fast shear-wave polarization direction is roughly perpendicular to ice-flow direction. We consider three mechanisms for ice anisotropy: a cluster model (vertical transversely isotropic (VTI) model); a girdle model (horizontal transversely isotropic (HTI) model); and crack-induced anisotropy (HTI model). Based on the data, we can rule out a VTI mechanism as the sole cause of anisotropy – an HTI component is needed, which may be due to ice crystal a-axis alignment in the direction of flow or the alignment of cracks or ice films in the plane perpendicular to the flow direction. The results suggest a combination of mechanisms may be at play, which represent vertical variations in the symmetry of ice crystal anisotropy in an ice stream, as predicted by ice fabric models.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. MR13-MR23 ◽  
Author(s):  
Stefano Picotti ◽  
José M. Carcione ◽  
Jing Ba

We build rock-physics templates (RPTs) for reservoir rocks based on seismic quality factors. In these templates, the effects of partial saturation, porosity, and permeability on the seismic properties are described by generalizing the Johnson mesoscopic-loss model to a distribution of gas-patch sizes in brine- and oil-saturated rocks. This model addresses the wave-induced fluid flow attenuation mechanism, by which part of the energy of the fast P-wave is converted into the slow P (Biot) diffusive mode. We consider patch sizes, whose probability density function is defined by a normal (Gaussian) distribution. The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average, and we show that the results are close to those obtained with the Hashin-Shtrikman average. The templates represent the seismic dissipation factor (reciprocal of seismic quality factor) as a function of the P-wave velocity, acoustic impedance, and [Formula: see text] (P to S velocity ratio), for isolines of saturation, porosity, and permeability. They differentiate between oil and brine on the basis of the quality factor, with the gas-brine case showing more dissipation than the gas-oil case. We obtain sensitivity maps of the seismic properties to gas saturation and porosity for brine and oil. Unlike the gas-brine case, which shows higher sensitivity of attenuation to gas saturation, the gas-oil case shows higher sensitivity to porosity, and higher acoustic impedance and [Formula: see text] sensitivity values versus saturation. The RPTs can be used for a robust sensitivity analysis, which provides insights on seismic attributes for hydrocarbon detection and reservoir delineation. The templates are also relevant for studies related to [Formula: see text]-storage monitoring.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. N1-N12 ◽  
Author(s):  
Beatriz Quintal ◽  
Stefan M. Schmalholz ◽  
Yuri Y. Podladchikov

The impact of changes in saturation on the frequency-dependent reflection coefficient of a partially saturated layer was studied. Seismic attenuation and velocity dispersion in partially saturated (i.e., patchy saturated) poroelastic media were accounted for by using the analytical solution of the 1D White’s model for wave-induced fluid flow. White’s solution was applied in combination with an analytical solution for the normal-incidence reflection coefficient of an attenuating layer embedded in an elastic or attenuating background medium to investigate the effects of attenuation, velocity dispersion, and tuning on the reflection coefficient. Approximations for the frequency-dependent quality factor, its minimum value, and the frequency at which the minimum value of the quality factor occurs were derived. The approximations are valid for any two alternating sets of petrophysical parameters. An approximation for the normal-incidence reflection coefficient of an attenuating thin (compared to the wavelength) layer was also derived. This approximation gives insight into the influence of contrasts in acoustic impedance and/or attenuation on the reflectivity of a thin layer. Laboratory data for reflections from a water-saturated sand layer and from a dry sand layer were further fit with petrophysical parameters for unconsolidated sand partially saturated with water and air. The results showed that wave-induced fluid flow can explain low-frequency reflection anomalies, which are related to fluid saturation and can be observed in seismic field data. The results further indicate that reflection coefficients of partially saturated layers (e.g., hydrocarbon reservoirs) can vary significantly with frequency, especially at low seismic frequencies where partial saturation may often cause high attenuation.


Sign in / Sign up

Export Citation Format

Share Document