Investigation of the bedrock (metamorphic basement) geometry of Santorini island using single-station ambient noise data 

Author(s):  
Nikolaos Chatzis ◽  
Constantinos Papazachos ◽  
Nikolaos Theodulidis ◽  
Panagiotis Hatzidimitriou ◽  
Marios Anthymidis ◽  
...  

<p>We investigate the geometry of the metamorphic basement of the Santorini volcanic island using ambient noise data to determine the pre-Alpine/pre-volcanic bedrock structure. The geometry of pre-volcanic Santorini is important in order to constrain the recent volcanic history of the island and also to study the site-effect of the volcanic formations on seismic motions. Santorini is the most active volcano of the Southern Aegean Volcanic Arc and is the southernmost island of the Cyclades islands metamorphic complex. As a result, the volcanic material that has accumulated during the last 600+ Kyrs has been superimposed on the pre-volcanic Santorini (Cycladic) island. To map the thickness of volcanic material, we have performed a large number (>200) of single-station noise measurements in the Santorini area.  Measurements were mainly performed using conventional acquisition systems (Guralp-40T 30sec seismometer and Reftek-130A digitizer). We also employed additional single-station noise data from several previous studies (Dimitriadis et al. 2006, PROTEUS Project 2015), as well as permanent stations from the Hellenic Seismological Network in the same region. HVSR curves were calculated using single-station noise data and were used to estimate the fundamental frequency, f<sub>0</sub>, as well as the corresponding maximum HVSR amplitude, A<sub>0</sub><sup>HVSR</sup>. The majority of HVSR curves showed prominent peaks (A<sub>0</sub><sup>HVSR</sup> locally larger than 7-8), indicating a clear impedance contrast between volcanics and metamorphic formations. To map the bedrock depth, we estimated the thickness of the upper volcanic formations using the quarter-wavelength approximation for each site. For this assessment, the average shear-wave velocity (Vs) of the volcanic formations was estimated from the inversion of several passive ambient noise array data, as well as additional constraints from selected MASW measurements. Where possible, the reliability of the spatial variation of volcanic formation thickness was checked with independent geological information. Using the digital elevation model and the volcanic formation thickness for each site of the single-station noise data, we estimated the spatial distribution of the pre-Alpine, metamorphic bedrock depth. The resulting geometry of the pre-volcanic Santorini island shows very deep basins (now filled with volcanic formations) around the pre-Alpine bedrock outcrop in the southern part of Santorini (Profitis Ilias), increasing to 100+ meters in the Kamari-Perissa basin area (southeastern Santorini) and to more than 400+ in the central (Fira-Imerovigli) and the north Santorini areas (Oia), in agreement with recent larger-scale tomographic results (Heath et al., 2019). The results are also in very good agreement with the pre-Alpine bedrock geometry independently inferred from gravity data inversion (Tzanis et al., 2019.)</p><p><strong>This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ), the Hellenic Foundation for Research and Innovation (HFRI) under the “First Call for HFRI Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 2924) and the Institute for the Study and Monitoring Of the SAntorini Volcano (ISMOSAV). </strong></p>

Author(s):  
Hao Rao ◽  
Yinhe Luo ◽  
Kaifeng Zhao ◽  
Yingjie Yang

Summary Correlation of the coda of Empirical Green's functions from ambient noise can be used to reconstruct Empirical Green's function between two seismic stations deployed different periods of time. However, such method requires a number of source stations deployed in the area surrounding a pair of asynchronous stations, which limit its applicability in cases where there are not so many available source stations. Here, we propose an alternative method, called two-station C2 method, which uses one single station as a virtual source to retrieve surface wave phase velocities between a pair of asynchronous stations. Using ambient noise data from USArray as an example, we obtain the interstation C2 functions using our C2 method and the traditional cross-correlation functions (C1 functions). We compare the differences between the C1 and C2 functions in waveforms, dispersion measurements, and phase velocity maps. Our results show that our C2 method can obtain reliable interstation phase velocity measurements, which can be used in tomography to obtain reliable phase velocity maps. Our method can significantly improve ray path coverage from asynchronous seismic arrays and enhance the resolution in ambient noise tomography for areas between asynchronous seismic arrays.


2015 ◽  
pp. 90-116
Author(s):  
Jolanta Szymańska

The economic crisis showed the weaknesses of the institutional system of the European Union, raising questions about its shape. The article aims to determine whether internal structures of the EU institutions and their modes of operation are chances or barriers for effective treaty implementation and the ability of institutions to face unexpected, difficult situations. The article focuses both on the formal structure of the institutions and their human resources. The article aims to conclude if the crisis may give impetus to a significant improvement in the EU institutional system.


Tectonics ◽  
2018 ◽  
Vol 37 (11) ◽  
pp. 4226-4238 ◽  
Author(s):  
Zhiqiang Liu ◽  
Chuntao Liang ◽  
Qian Hua ◽  
Ying Li ◽  
Yihai Yang ◽  
...  

2020 ◽  
Vol 91 (4) ◽  
pp. 2234-2246
Author(s):  
Hang Li ◽  
Jianqiao Xu ◽  
Xiaodong Chen ◽  
Heping Sun ◽  
Miaomiao Zhang ◽  
...  

Abstract Inversion of internal structure of the Earth using surface waves and free oscillations is a hot topic in seismological research nowadays. With the ambient noise data on seismically quiet days sourced from the gravity tidal observations of seven global distributed superconducting gravimeters (SGs) and the seismic observations for validation from three collocated STS-1 seismometers, long-period surface waves and background free oscillations are successfully extracted by the phase autocorrelation (PAC) method, respectively. Group-velocity dispersion curves at the frequency band of 2–7.5 mHz are extracted and compared with the theoretical values calculated with the preliminary reference Earth model. The comparison shows that the best observed values differ about ±2% from the corresponding theoretical results, and the extracted group velocities of the best SG are consistent with the result of the collocated STS-1 seismometer. The results indicate that reliable group-velocity dispersion curves can be measured with the ambient noise data from SGs. Furthermore, the fundamental frequency spherical free oscillations of 2–7 mHz are also clearly extracted using the same ambient noise data. The results in this study show that the SG, besides the seismometer, is proved to be another kind of instrument that can be used to observe long-period surface waves and free oscillations on seismically quiet days with a high degree of precision using the PAC method. It is worth mentioning that the PAC method is first and successfully introduced to analyze SG observations in our study.


2008 ◽  
Author(s):  
John W. Lane ◽  
Eric A. White ◽  
Gregory V. Steele ◽  
James C. Cannia

2020 ◽  
Author(s):  
K. Hayashi ◽  
Y.S. Seik ◽  
Y.Y. Seik ◽  
L.T. Wong ◽  
J. Pang ◽  
...  

2021 ◽  
Vol 225 (2) ◽  
pp. 1032-1047
Author(s):  
A-S Mreyen ◽  
L Cauchie ◽  
M Micu ◽  
A Onaca ◽  
H-B Havenith

SUMMARY Origins of ancient rockslides in seismic regions can be controversial and must not necessarily be seismic. Certain slope morphologies hint at a possible coseismic development, though further analyses are required to better comprehend their failure history, such as modelling the slope in its pre-failure state and failure development in static and dynamic conditions. To this effect, a geophysical characterization of the landslide body is crucial to estimate the possible failure history of the slope. The Balta rockslide analysed in this paper is located in the seismic region of Vrancea-Buzau, Romanian Carpathian Mountains and presents a deep detachment scarp as well as a massive body of landslide deposits. We applied several geophysical techniques on the landslide body, as well as on the mountain crest above the detachment scarp, in order to characterize the fractured rock material as well as the dimension of failure. Electrical resistivity measurements revealed a possible trend of increasing fragmentation of rockslide material towards the valley bottom, accompanied by increasing soil moisture. Several seismic refraction surveys were performed on the deposits and analysed in form of P-wave refraction tomographies as well as surface waves, allowing to quantify elastic parameters of rock. In addition, a seismic array was installed close to the detachment scarp to analyse the surface wave dispersion properties from seismic ambient noise; the latter was analysed together with a colocated active surface wave analysis survey. Single-station ambient noise measurements completed all over the slope and deposits were used to further reveal impedance contrasts of the fragmented material over in situ rock, representing an important parameter to estimate the depth of the shearing horizon at several locations of the study area. The combined methods allowed the detection of a profound contrast of 70–90 m, supposedly associated with the maximum landslide material thickness. The entirety of geophysical results was used as basis to build up a geomodel of the rockslide, allowing to estimate the geometry and volume of the failed mass, that is, approximately 28.5–33.5 million m3.


Sign in / Sign up

Export Citation Format

Share Document