Microplastics from the Sources to Sinks: Assessment of Microplastics in the River Freshwater Environments and Wastewater Treatment Plants

Author(s):  
A H M Enamul Kabir ◽  
Masahiko Sekine ◽  
Tsuyoshi Imai ◽  
Koichi Yamamoto ◽  
Ariyo Kanno ◽  
...  

<p>Freshwater microplastics pollution has been a recent focus. River freshwater microplastics pollution are vital towards freshwater ecosystems as well as have been the prominent source-to-sink conduits to export MPs into the marine realm. Wastewater treatment plants (WWTPs) have been identified as one of the major point-sources. To date, sources-to-sinks comprehensive knowledge are highly limited. This study explored sources-to-sinks microplastics pollution i.e., WWTPs-to-river-to-marine comprehensively. The two rivers i.e., Koya River (KR) and Nishiki River (NR) which are flowing to the Seto Inland Sea (SIS) and the WWTPs effluent samples were collected from selected (n=37) stations in the Yamaguchi prefecture, Japan. Filtration, wet peroxidation, and density separation methods were employed to extract microplastics particles. Polymers were identified via attenuated total reflectance-Fourier transform infrared spectroscopy. The average microplastics abundances were found KR—82.25±67.84 n/L and NR—38.73±24.13 n/L for the river water, and KRWWTPs—79.5±3.5 n/L and NRWWTPs—72.25±23.64 n/L for WWTPs effluents, respectively. The KR were found to be more polluted than the NR. WWTPs effluents were found posing higher abundances than rivers. Significantly higher microplastics concentration were found in the WWTPs downstream stations than other river stations. Characterization revealed that small MPs (<1000 µm) in size, fibers in shape, polymers— polyethylene, polypropylene, polyethylene terephthalate, vinylon were major in both of the WWTPs effluents and rivers. WWTPs influenced river environments by means both of the abundances and microplastics characteristics (shapes-size-polymers). The estimated source-to-sink emission demonstrated a substantial number of MPs discharge into the rivers by the WWTPs (0.007—0.086 billion/day) and rivers-to-SIS marine environments (1.15—7.951 billion/day). The emission represented that the WWTPs were the prominent point-source to cause river microplastics pollution. Rivers were the initial sinks of the Japan land-sourced microplastics and prominent pathways to emit microplastics to the ultimate marine sink i.e., SIS. Large amounts of MPs are being generated on land sources before the plastics wastes degrade into MPs secondarily. The pollution characteristics (shapes-sizes-polymers) indicated ecotoxicological threats to these rivers and the downstream environments. Overall, this study provided an insight of sources-to-sinks pollution, fulfilled the preliminary knowledge gaps of pollution occurring land-sources, fate and loadings. We recommended microplastics pollution control at source. This study will aid in developing microplastics pollution control and management strategies for environmental protection and sustainability in the regional Japan as well as global context upon “thinking globally and acting locally”.</p><p><strong>Keywords: </strong>Abundance, Point-source, Source-to-sink, Riverine microplastics pollution, Wastewater treatment plants</p>

2018 ◽  
Vol 45 ◽  
pp. 00054 ◽  
Author(s):  
Bozena Mrowiec

The aim of this paper was to review the literature data regarding the physico-chemical characteristic of plastic pollutants discharged with municipal sewage, the practical possibility of removing microplastic particles from wastewater during different treatment steps in WWTPs and the problem of surface water contamination within them. Microplastics (the size range of 1 nm to < 5 mm), have been recognized as an emerging threat, as well as an ecotoxicological and ecological risk for water ecosystems. Municipal wastewater treatment plants (WWTPs) are mentioned as the main point sources of microplastics in an aquatic environment. Microplastic particles can be effectively removed in the primary treatment zones via solids skimming and sludge settling processes. Different tertiary treatment processes such as: gravity sand filtration, discfilter, air flotation and membrane filtration provide substantial additional removal of microplastics, and the efficiency of wastewater treatment process can be at a removal level of 99.9%. Nevertheless, given the large volumes of effluent constantly discharged to receivers, even tertiary level WWTPs may constitute a considerable source of microplastics in the surface water.


1993 ◽  
Vol 28 (10) ◽  
pp. 351-359 ◽  
Author(s):  
H. Ødegaard ◽  
B. Rusten ◽  
H. Badin

In 1988 the State Pollution Control Authority in Norway made recommendations regarding process designs for small wastewater treatment plants. Amongst these were recommendations for biological/chemical plants where biofilm reactors were used in combination with pretreatment in large septic tanks and chemical post treatment. At the same time the socalled “moving bed biofilm reactor” (MBBR) was developed by a Norwegian company. In this paper, experiences from a small wastewater treatment plant, based on the MBBR and on the recommendations mentioned, will be presented.


1993 ◽  
Vol 28 (10) ◽  
pp. 25-32 ◽  
Author(s):  
B. Paulsrud ◽  
S. Haraldsen

The Norwegian State Pollution Control Authority introduced in 1986 a system for approval of wastewater treatment plants serving less than 35 persons. This system is based upon three approval classes and includes “real life” testing of the plants for a minimum period of six months. During the test period several factors (hydraulic capacity, sludge production, effluents concentrations etc.) are examined. The six types of plant that have been approved so far are described and the test results are presented and discussed. General experiences with the approval system are summarized, including effects of the mandatory service contract between manufacturer/supplier and the houseowner.


2014 ◽  
Vol 69 (12) ◽  
pp. 2407-2416 ◽  
Author(s):  
Magdalena Svanström ◽  
Giorgio Bertanza ◽  
David Bolzonella ◽  
Matteo Canato ◽  
Carlo Collivignarelli ◽  
...  

The legislative framework in force in Europe entails restrictive effluent standards for sensitive areas, and quite severe restrictions on the properties of residual sewage sludge, both for landfill disposal and for agricultural use. Several technologies and management strategies have been proposed and applied in wastewater treatment plants to minimise sludge production and contamination. However, their techno-economic and environmental performance has to be carefully evaluated. The ROUTES project, funded within the EU Seventh Framework programme, aims to find new routes for wastewater treatment and sludge management and thereby guide EU members in their future choices. Within this project, the authors have developed and applied a procedure for techno-economic-environmental assessment of new wastewater and sludge processing lines in comparison to reference plants. The reference plants are model conventional plants that experience different types of problems and the new plants are modified plants in which different innovative technologies have been added to solve these problems. The procedure involves a rating of selected technical issues, estimates of operating costs and an assessment of environmental impacts from a life cycle perspective. This paper reports on the procedure and shows examples of results.


2020 ◽  
Vol 29 (2) ◽  
pp. 123-135
Author(s):  
Libor Ansorge ◽  
Elžbieta Čejka ◽  
Jiří Dlabal ◽  
Lada Stejskalová

Surface water pollution is referred to be a problem in the entire Odra river basin. In sub-basins, an insufficient degree of wastewater treatment has been identified as a major problem – in relation to the best available technologies and environmental objectives of Directive 2000/60/EC. The grey water footprint indicator was used to express the influence of point sources of pollution (industrial and municipal wastewater treatment plants) on discharged pollution reduction in the Czech part of the international Odra river basin. The number of 391 records of wastewater treatment plants for the period 2004–2018 was analysed. The results show that the wastewater treatment plants reduce by up to 92% the potential water needs for dilution of pollution discharged into waters in the Czech part of the Odra river basin.


2006 ◽  
Vol 2006 (2) ◽  
pp. 591-607
Author(s):  
Grzegorz Bujoczek ◽  
Jan A. Oleszkiewicz ◽  
James L. Barnard ◽  
Patrick Coleman ◽  
Kenneth Abraham

2005 ◽  
Vol 51 (11) ◽  
pp. 121-129 ◽  
Author(s):  
M. Cakmakci ◽  
E. Erdim ◽  
C. Kinaci ◽  
L. Akca

The main concern of this paper was to predict the sludge quantities generated from 18 wastewater treatment plants, which were stated to be established in the “Istanbul Water Supply, Sewerage and Drainage, Sewage Treatment and Disposal Master Plan”, 10 of which are in operation at present. Besides this, obtaining the required data to compare various treatment schemes was another goal of the study. Especially, the estimation of the sludge quantity in the case of enhanced primary sedimentation was of importance. Wastewater sludge management strategies were discussed in order to develop suggestions for Istanbul Metropolitan city. Within this context, the wastewater treatment facilities, mentioned in the Master Plan that had been completed by 2000, were evaluated in terms of sludge production rates, locations and technical and management aspects. Disposal alternatives of the wastewater treatment sludge were also evaluated in this study. Using of the dewatered sludge as a landfill cover material seems the best alternative usage. Up to the year of 2040, the requirement of cover material for landfills in İstanbul will be met by the dewatered sludge originated from wastewater treatment plants in the region.


Author(s):  
Daniela Angela Buzoianu ◽  
Casen Panaitescu

Reducing the costs of wastewater treatment plants in the food industry is a necessity. Thus, it is necessary to find solutions to make their operation more efficient. The use of biogas obtained in the production process is a variant that leads to the increase of the profit at the whole plant level. This is how the Balance Scorecard model was used. The use of this model was based on non-financial indicators. These were: biogas quality and wastewater indicators from the UASB reactor that ensures biogas quality.


Author(s):  
Valeria Di Nica ◽  
Sara Villa ◽  
Valeria Lencioni

Are the effluents of wastewater treatment plants in high mountains of concern for aquatic biodiversity? To answer this question, we carried out an experimental study testing the short-term toxicity of some Pharmaceutical Active Compounds (PhACs) in the effluents of a plant in a mountain valley of the Italian Alps sampled during the high tourist season (i.e., the ski season) when PhACs contamination is higher. We used different tools, taking as a model the bacterium Aliivibrio fischeri: the “whole-mixture approach” (Microtox test), “component-based approach”, predictive models “Concentration Addition (CA)”, “Independent Action (IA)”, and Combination Index (CI)”. We investigated the nature of interactions potentially occurring among seven selected PhACs (clarithromycin, naproxen, acetaminophen (paracetamol), ibuprofen, diclofenac, carbamazepine, and amoxicillin). This study showed that anti-inflammatory ibuprofen and diclofenac have higher short-term toxicity (IC50 <100 mg L-1) for A. fischeri compared with antibiotics, whose toxic effects are expected to become visible in the long term. Furthermore, based on the CI method, the seven PhACs seem not to interact in a synergistic or antagonistic way, but the final effect of their mixture seems to be equal to the sum of their individual effects. Notwithstanding the high tourist pressure, the Microtox test reported an overall toxicity of only 21%, which drops to 7% in the receiving water body, the Vermigliana stream. These values, besides the predictions by CA and IA, are not alarming per se, i.e., the treated effluent of the plant in the period of maximum tourist pressure can be considered no harmful to aquatic microorganisms. However, based on other studies highlighting negative effects of the diluted treated effluent of the same plant on macroinvertebrate community structure, we suggest that other model organisms be considered, including algae, insects, and fish, to assess the real ecological risk to wildlife of an effluent. The experimental tests on A. fischeri are useful for fast, preliminary information on the level of risk for freshwater ecosystems, but they should be combined with field studies and experiments on the wild populations to increase the ecological realism.


Sign in / Sign up

Export Citation Format

Share Document