Effects of mean sea level rise and tidal flat growth on tides and storm surge events in the Elbe estuary

Author(s):  
Tara Mahavadi ◽  
Elisabeth Rudolph ◽  
Rita Seiffert ◽  
Norbert Winkel

<p>Future mean sea level rise will influence tidal dynamics and storm surge events in estuaries. The bathymetry in estuaries and coastal areas will also be affected by mean sea level rise, since it is in a morphodynamic equilibrium with hydrodynamic forces. Tidal flats, which are an important component of coastal protection, will grow to a certain extent with mean sea level rise in case of sufficient sediment availability.</p><p>With the help of a highly resolved hydrodynamic-numerical model of the German Bight (North Sea), we analyse the potential influence of mean sea level rise and vertical growth of tidal flats on tidal dynamics and storm surge events in the Elbe estuary.</p><p>The results show an increase of tidal amplitude and storm surge water levels due to mean sea level rise. A bathymetric rise of tidal flats in the German Bight and the mouth of the Elbe estuary leads to a decrease in storm surge water level and tidal amplitude compared to the scenario with sole mean sea level rise without a change in bathymetry. Further analyses show, how geometric parameters of the Elbe estuary are changing due to mean sea level rise and tidal flat growth. These changes in geometry influence tidal dynamics and can therefore be an explanation for the observed changes in tidal amplitude and storm surge water levels.</p><p>These findings enable a better understanding of future changes in the Elbe estuary and support coastal managers in decision making processes concerning adaptation options to reduce the impacts of climate change.</p>

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


Author(s):  
Kristian Breili ◽  
Matthew James Ross Simpson ◽  
Erlend Klokkervold ◽  
Oda Roaldsdotter Ravndal

Abstract. Using new high accuracy Light Detection and Ranging elevation data we generate coastal flooding maps for Norway. Thus far, we have mapped ~ 80 % of the coast, for which we currently have data of sufficient accuracy to perform our analysis. Although Norway is generally at low risk from sea-level rise largely owing to its steep topography, the maps presented here show that on local scales, many parts of the coast are potentially vulnerable to flooding. There is a considerable amount of infrastructure at risk along the relatively long and complicated coastline. Nationwide we identify a total area of 400 km2, 105,000 buildings, and 510 km of roads that are at risk of flooding from a 200 year storm-surge event at present. These numbers will increase to 610 km2, 137,000, and 1340 km with projected sea-level rise to 2090 (95th percentile of RCP8.5 as recommended in planning). We find that some of our results are likely biased high owing to erroneous mapping (at least for lower water levels close to the tidal datum which delineates the coastline). A comparison of control points from different terrain types indicates that the elevation model has a root mean square error of 0.26 m and is the largest source of uncertainty in our mapping method. The coastal flooding maps and associated statistics are freely available, and alongside the development of coastal climate services, will help communicate the risks of sea-level rise and storm surge to stakeholders. This will in turn aid coastal management and climate adaption work in Norway.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


2019 ◽  
Author(s):  
Amir Hossein Mahdavi ◽  
Hamid Ansari Sharghi

Storm surge is generated by the integration of waves, tide and wind setup that is resulted in unwanted mean sea level rise and coastal flooding. The estimation of accurate storm surge is essential for the engineering design of coastal structures. In this study, we estimated the respond of mean sea level winds, tide, waves, and sea-level rise using a local coastal model. A fully coupled hydrodynamic and wave model was implemented to obtain storm surge from different phenomena. The simulations of water level fluctuations due to these parameters were analyzed with the wind forces identified with tidal observations in the Port of Kong. Extreme value analysis was performed to determine the fluctuations associated with different return periods. These data were combined by sea-level rise projections are combined with resulted value. The worst and best scenario of storm surges for each return period were determined for engineering design purposes.


2011 ◽  
pp. 63-69
Author(s):  
Nenad Banjac ◽  
Divna Jovanovic

An attempt was made to describe two parasequences separated within the sediments of the Kotroman Formation at the Mokra Gora Village in western Serbia. The whole formation, of Albian-Cenomanian age, in some general characteristics corresponds to tidal flats, some of which were described in the literature (LARSONNEUR 1975), and the sediments were compared with ones from recent tidal flat environments. The heterogeneous composition of the Kotroman Formation influenced different authors to describe several non-synchronous and incomparable superpositioned packages. The parasequences were investigated in the attempt to correlate them with the stratigraphic age of the members. The parasequences were formed during the Albian transgression and represent a gradual deepening of the wider area. Well-developed flooding surfaces with significant deepening indicated retrogradational stacking of certain transgressive system tracts and reflect landward movement of the shoreline, indicating a gradual sea level rise.


2021 ◽  
Author(s):  
Davide Tognin ◽  
Andrea D'Alpaos ◽  
Marco Marani ◽  
Luca Carniello

<p>Coastal wetlands lie at the interface between submerged and emerged environments and therefore represent unique yet delicate ecosystems. Their existence, resulting from complex interactions between hydrodynamics and sediment dynamics, is challenged by increasing rates of sea-level rise, lowered fluvial sediment input as well as an increasing anthropogenic pressure. The future survival of these peculiar morphologies is becoming even more complicated, because of the construction and planning of coastal defence structures designed to protect urban areas from flooding. Important examples are the flood protection systems built to protect New Orleans (USA), the river Scheldt Estuary (The Netherlands) and Venice (Italy). In this context, understanding the physical processes on which coastal marshes are grounded and how engineering measures can alter them is of extreme importance in order to plan conservation interventions.</p><p>To understand marsh sedimentation dynamics in flood-regulated environments, we investigated through field observations and modelling the effect of the storm-surge barrier designed to protect the city of Venice, the so-called Mo.S.E. system, which has in fact become operational since October 2020.</p><p>Sedimentation measurements in different salt marshes of the Venice lagoon carried out in the period October 2018-October 2020 show that more than 70% of yearly sedimentation accumulates during storm-surge conditions, despite their short duration. Moreover, the sedimentation rate displays a highly non-linear increase with marsh inundation intensity, due to the interplay between higher water levels and greater suspended sediment concentration. Barrier operations during storm surges to avoid flooding of urban areas will reduce water levels and marsh inundation. Therefore, we computed sedimentation in a flood-regulated scenario for the same observation period, using the relation we obtained between tidal forcing and sedimentation rate. Our results show that some occasional closures during intense storm surges (70 hours/year on average) suffice to reduce the yearly sedimentation of the same order of magnitude of the relative sea-level rise rate experienced by the Venice lagoon during the last century (2.5 mm/y).</p><p>We conclude that storm-surge barrier operations can dangerously reduce salt-marsh vertical accretion rate, thus challenging wetland survival in face of increasing sea-level rise.</p>


2003 ◽  
Vol 82 (2) ◽  
pp. 115-131 ◽  
Author(s):  
B. Makaske ◽  
D.G. Van Smeerdijk ◽  
H. Peeters ◽  
J.R. Mulder ◽  
T. Spek

AbstractThe rise of Holocene (ground)water level as a function of relative sea-level rise has been extensively investigated in the western Netherlands, whereas few studies focused on the Flevo lagoon in the central Netherlands. In this study, all available 14C dates from the base of basal peat overlying the top of compaction-free Pleistocene sand in the former Flevo lagoon were evaluated in order to reconstruct water-level rise for the period 5300-2000 cal. yr BC. The present basal peat 14C data set from Flevoland consists of two subsets: (1) the largely new Almere data (41 dates) representing the southern part of the former Flevo lagoon, with 26 dates especially carried out for this study, and (2) the existing Schokland data (21 dates) representing the eastern part of the lagoon. The Schokland area is located about 50 km from the Almere area. The quality of all basal peat time-depth data was palaeo-ecologically and geologically evaluated, all 14C dates were calibrated to the same standards, and error margins of age and altitude determination were estimated. After plotting the data as error boxes in time-depth graphs, lower limit curves for water-level rise were constructed for both data sets. Comparison with the mean sea-level curve for The Netherlands (Van de Plassche, 1982) suggests that water-level rise in the Almere area between 5300 and 2000 cal. yr BC corresponded closely to the rise in mean sea level. The same holds for the Schokland area for the period 5000-4200 cal. yr BC. For the period 4200-2000 cal. yr BC, however, the Schokland data suggest water-level rise to have been slower than mean sea-level rise, leading to local water levels apparently below mean sea level, which is virtually impossible. Hypothetical explanations for this discrepancy include: errors and uncertainties in mean sea-level and local water-level reconstruction, basin subsidence and temporal differences in intra-coastal tidal damping. The presently available data are inconclusive at this point and Holocene water-level rise in the Flevo lagoon awaits further investigations.


2020 ◽  
Vol 20 (2) ◽  
pp. 673-694
Author(s):  
Kristian Breili ◽  
Matthew James Ross Simpson ◽  
Erlend Klokkervold ◽  
Oda Roaldsdotter Ravndal

Abstract. Using new high-accuracy light detection and ranging (lidar) elevation data we generate coastal flooding maps for Norway. Thus far, we have mapped ∼80 % of the coast, for which we currently have data of sufficient accuracy to perform our analysis. Although Norway is generally at low risk from sea level rise largely owing to its steep topography and land uplift due to glacial isostatic adjustment, the maps presented here show that, on local scales, many parts of the coast are potentially vulnerable to flooding. There is a considerable amount of infrastructure at risk along the relatively long and complicated coastline. Nationwide we identify a total area of 400 km2, 105 000 buildings, and 510 km of roads that are at risk of flooding from a 200-year storm surge event at present. These numbers will increase to 610 km2, 137 000, and 1340 km with projected sea level rise to 2090 (95th percentile of RCP8.5 as recommended in planning). We find that some of our results are likely biased high owing to erroneous mapping (at least for lower water levels close to the tidal datum which delineates the coastline). A comparison of control points from different terrain types indicates that the elevation model has a root-mean-square error of 0.26 m and is the largest source of uncertainty in our mapping method. The coastal flooding maps and associated statistics are freely available, and alongside the development of coastal climate services, will help communicate the risks of sea level rise and storm surge to stakeholders. This will in turn aid coastal management and climate adaptation work in Norway.


2015 ◽  
Vol 96 ◽  
pp. 118-131 ◽  
Author(s):  
A. Arns ◽  
T. Wahl ◽  
S. Dangendorf ◽  
J. Jensen

Sign in / Sign up

Export Citation Format

Share Document