Influence of mean sea level rise on tidal dynamics of the Ria de Aveiro lagoon, Portugal

2014 ◽  
Vol 70 ◽  
pp. 574-579 ◽  
Author(s):  
Carina L. Lopes ◽  
João M. Dias
2019 ◽  
Vol 7 (10) ◽  
pp. 352 ◽  
Author(s):  
Lopes ◽  
Lopes ◽  
Dias

Climate change and global sea-level rise are major issues of the 21st century. The main goal of this study is to assess the physical and biogeochemical status of the Ria de Aveiro lagoon (Portugal) under future climate scenarios, using a coupled physical/ eutrophication model. The impact on the lagoon ecosystem status of the mean sea level rise (MSLR), the amplitude rise of the M2 tidal constituent (M2R), the changes in the river discharge, and the rising of the air temperature was investigated. Under MSLR and M2R, the results point to an overall salinity increase and water temperature decrease, revealing ocean water dominance. The main lagoon areas presented salinity values close to those of the ocean waters (~34 PSU), while a high range of salinity was presented for the river and the far end areas (20–34 PSU). The water temperature showed a decrease of approximately 0.5–1.5 °C. The responses of the biogeochemical variables reflect the increase of the oceanic inflow (transparent and nutrient-poor water) or the reduction of the river flows (nutrient-rich waters). The results evidenced, under the scenarios, an overall decreasing of the inorganic nitrogen concentration and the carbon phytoplankton concentrations. A warm climate, although increasing the water temperature, does not seem to affect the lagoon’s main status, at least in the frame of the model used in the study.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


2019 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its flat coastal areas, especially the German Bight (located in the south-east of the North Sea) will be affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. By definition models cannot represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 m and 10 m. To the mean sea level rise of 0.8 m the shelf model and the German Bight Model react in different ways. In the shelf model the M2 amplitude generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise in the order of 1 m. For higher mean sea level rise scenarios (10 m) the resolution of the bathymetry is less important.


2021 ◽  
Author(s):  
Tara Mahavadi ◽  
Elisabeth Rudolph ◽  
Rita Seiffert ◽  
Norbert Winkel

<p>Future mean sea level rise will influence tidal dynamics and storm surge events in estuaries. The bathymetry in estuaries and coastal areas will also be affected by mean sea level rise, since it is in a morphodynamic equilibrium with hydrodynamic forces. Tidal flats, which are an important component of coastal protection, will grow to a certain extent with mean sea level rise in case of sufficient sediment availability.</p><p>With the help of a highly resolved hydrodynamic-numerical model of the German Bight (North Sea), we analyse the potential influence of mean sea level rise and vertical growth of tidal flats on tidal dynamics and storm surge events in the Elbe estuary.</p><p>The results show an increase of tidal amplitude and storm surge water levels due to mean sea level rise. A bathymetric rise of tidal flats in the German Bight and the mouth of the Elbe estuary leads to a decrease in storm surge water level and tidal amplitude compared to the scenario with sole mean sea level rise without a change in bathymetry. Further analyses show, how geometric parameters of the Elbe estuary are changing due to mean sea level rise and tidal flat growth. These changes in geometry influence tidal dynamics and can therefore be an explanation for the observed changes in tidal amplitude and storm surge water levels.</p><p>These findings enable a better understanding of future changes in the Elbe estuary and support coastal managers in decision making processes concerning adaptation options to reduce the impacts of climate change.</p>


2013 ◽  
Vol 165 ◽  
pp. 1981-1986 ◽  
Author(s):  
Juliana Marques Valentim ◽  
Leandro Vaz ◽  
Nuno Vaz ◽  
Helena Silva ◽  
Bernardo Duarte ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 205
Author(s):  
Serafino Afonso Rui Mucova ◽  
Ulisses Miranda Azeiteiro ◽  
Walter Leal Filho ◽  
Carina Lurdes Lopes ◽  
João Miguel Dias ◽  
...  

Mean sea-level is expected to rise significantly by 2100 in all scenarios, including those compatible with the objectives of the Paris Climate Agreement. Global sea level rise projections indicate devastating implications for populations, ecosystem services and biodiversity. The implications of the sea-level rise (SLR) on low-lying islands and coastal regions and communities are substantial and require deep-rooted coping measures. In the absence of adequate responses for coping, Mozambique is expected to record huge losses, with an impact on the economy and development in many sectors of its coastal regions mainly in northern Mozambique. This research aimed to perform projections on SLR in Mozambique, and to understand its role and implications on the north coast of the country. SLR was estimated through the analysis of model outputs that support the global estimates of the fifth IPCC report near the Mozambican coast, for each of the four representative concentration pathways (RCPs) scenarios. Regional coastline retreat and coastal erosion were estimated through the results of global sandy coastlines projections developed by Vousdoukas. Mean sea-level rise projections indicate that regional estimates for the Mozambican coast are relative higher than global estimates (~0.05 m) for all representative concentration pathways (RCPs). Yet, we highlight significant differences in sea-level rises of 0.5 m, 0.7 m or 1.0 m by 2100 compared to the global mean. It is expected that with the increase in the mean sea level in the northern part of the Mozambican coast, erosive effects will increase, as well as the retreat of the coastline until 2100. With this, the tourism sector, settlements, ecosystem services and local populations are expected to be significantly affected by 2050, with increased threats in 2100 (RCP4.5, RCP8.5). Local responses for coping are proposed and properly discussed for the RCP4.5 and RCP8.5 scenarios through 2100.


2014 ◽  
Vol 289 ◽  
pp. 36-44 ◽  
Author(s):  
B. Duarte ◽  
J.M. Valentim ◽  
J.M. Dias ◽  
H. Silva ◽  
J.C. Marques ◽  
...  

INCREaSE 2019 ◽  
2019 ◽  
pp. 56-75
Author(s):  
Dissanayake Sampath ◽  
Tomasz Boski ◽  
Delminda Moura ◽  
Cristina Veiga-Pires

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


Sign in / Sign up

Export Citation Format

Share Document