Slow electrostatic solitary waves in the Earth's magnetosphere

Author(s):  
Sergey Kamaletdinov ◽  
Ivan Vasko ◽  
Egor Yushkov ◽  
Anton Artemyev ◽  
Rachel Wang

<p>Slow electron holes, that are electrostatic solitary waves propagating with velocities comparable to the ion thermal velocity, can contribute to plasma heating and provide an anomalous resistivity in various space plasma systems. In addition, the analysis of electron holes allows revealing instabilities operating on time scales not resolved by plasma instruments. We present experimental analysis of more than 100 slow electron holes in the Earth’s bow shock and more than 1000 slow electron holes in the Earth’s nightside magnetosphere. We show that in both regions, the electron holes have similar parameters. The spatial scales are in the range from 1 to 10 Debye lengths, amplitudes of the electrostatic potential are typically below 0.1 of local electron temperature, velocities in the plasma rest frame are of the order of local ion-acoustic velocity. We show that in both regions the electron holes are most likely produced by Buneman-type instabilities. We develop theoretical models of the electron holes and compare them to MMS observations. The lifetime and the transverse instability of the electron holes are discussed.</p><p>This work was supported by the Russian Scientific Foundation, Project No. 19–<span>12-00313</span></p>

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Guillaume Ropp ◽  
Vincent Lesur ◽  
Julien Baerenzung ◽  
Matthias Holschneider

Abstract We describe a new, original approach to the modelling of the Earth’s magnetic field. The overall objective of this study is to reliably render fast variations of the core field and its secular variation. This method combines a sequential modelling approach, a Kalman filter, and a correlation-based modelling step. Sources that most significantly contribute to the field measured at the surface of the Earth are modelled. Their separation is based on strong prior information on their spatial and temporal behaviours. We obtain a time series of model distributions which display behaviours similar to those of recent models based on more classic approaches, particularly at large temporal and spatial scales. Interesting new features and periodicities are visible in our models at smaller time and spatial scales. An important aspect of our method is to yield reliable error bars for all model parameters. These errors, however, are only as reliable as the description of the different sources and the prior information used are realistic. Finally, we used a slightly different version of our method to produce candidate models for the thirteenth edition of the International Geomagnetic Reference Field.


1987 ◽  
Vol 184 ◽  
pp. 75-99 ◽  
Author(s):  
T. Yao-Tsu Wu

This study investigates the recently identified phenomenon whereby a forcing disturbance moving steadily with a transcritical velocity in shallow water can generate, periodically, a succession of solitary waves, advancing upstream of the disturbance in procession, while a train of weakly nonlinear and weakly dispersive waves develops downstream of a region of depressed water surface trailing just behind the disturbance. This phenomenon was numerically discovered by Wu & Wu (1982) based on the generalized Boussinesq model for describing two-dimensional long waves generated by moving surface pressure or topography. In a joint theoretical and experimental study, Lee (1985) found a broad agreement between the experiment and two theoretical models, the generalized Boussinesq and the forced Korteweg-de Vries (fKdV) equations, both containing forcing functions. The fKdV model is applied in the present study to explore the basic mechanism underlying the phenomenon.To facilitate the analysis of the stability of solutions of the initial-boundary-value problem of the fKdV equation, a family of forced steady solitary waves is found. Any such solution, if once established, will remain permanent in form in accordance with the uniqueness theorem shown here. One of the simplest of the stationary solutions, which is a one-parameter family and can be scaled into a universal similarity form, is chosen for stability calculations. As a test of the computer code, the initially established stationary solution is found to be numerically permanent in form with fractional uncertainties of less than 2% after the wave has traversed, under forcing, the distance of 600 water depths. The other numerical results show that when the wave is initially so disturbed as to have to rise from the rest state, which is taken as the initial value, the same phenomenon of the generation of upstream-advancing solitons is found to appear, with a definite time period of generation. The result for this similarity family shows that the period of generation, Ts, and the scaled amplitude α of the solitons so generated are related by the formula Ts = const α−3/2. This relation is further found to be in good agreement with the first-principle prediction derived here based on mass, momentum and energy considerations of the fKdV equation.


2021 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The foreshock is a region filled with a turbulent plasma located upstream the Earth’s bow shock where interplanetary magnetic field (IMF) lines are connected to the bow shock surface. In this region, ultra-low frequency (ULF) waves are generated due to the interaction of the solar wind plasma with particles reflected from the bow shock back into the solar wind. It is assumed that excited waves grow and they are convected through the solar wind/foreshock, thus the inner spacecraft (close to the bow shock) would observe larger wave amplitudes than the outer (far from the bow shock) spacecraft. The paper presents a statistical analysis of excited ULF fluctuations observed simultaneously by two closely separated THEMIS spacecraft orbiting the Moon under a nearly radial IMF. We found that ULF fluctuations (in the plasma rest frame) can be characterized as a mixture of transverse and compressional modes with different properties at both locations. We discuss the growth and/or damping of ULF waves during their propagation.</p>


2014 ◽  
Vol 32 (6) ◽  
pp. 677-687 ◽  
Author(s):  
R. Pottelette ◽  
M. Berthomier ◽  
J. Pickett

Abstract. In the auroral kilometric radiation (AKR) source region, acceleration layers narrow in altitude and associated with parallel field-aligned potential drops of several kV can be identified by using both particles and wave-field high time-resolution measurements from the Fast Auroral SnapshoT explorer spacecraft (FAST). These so-called double layers (DLs) are recorded around density enhancements in the auroral cavity, where the enhancement can be at the edge of the cavity or even within the cavity at a small scale. Once immersed in the plasma, DLs necessarily accelerate particles along the magnetic field lines, thereby generating locally strong turbulent processes leading to the formation of nonlinear phase space holes. The FAST data reveal the asymmetric character of the turbulence: the regions located on the high-potential side of the DLs are characterized by the presence of electron holes, while on the low-potential side, ion holes are recorded. The existence of these nonlinear phase space holes may affect the AKR radiation pattern in the neighbourhood of a DL where the electron distribution function is drastically different from a horseshoe shape. We present some observations which illustrate the systematic generation of elementary radiation events occurring significantly above the local electron gyrofrequency in the presence of electron holes. These fine-scale AKR radiators are associated with a local electron distribution which presents a pronounced beam-like shape.


2020 ◽  
Vol 27 (2) ◽  
pp. 022102
Author(s):  
Debraj Mandal ◽  
Devendra Sharma ◽  
Hans Schamel

1965 ◽  
Vol 21 ◽  
pp. 109-113
Author(s):  
R. O. Vicente

The author discusses the dependence of the constants of nutation and precession upon the values of other fundamental constants such as the dynamical ellipticity of the Earth, the mass of the Moon and the solar parallax in the case of two different theoretical models of the Earth.


1995 ◽  
Vol 10 ◽  
pp. 291-293
Author(s):  
Martin C.E. Huber ◽  
Arne Pedersen ◽  
Claus Fröhlich

There is one astrophysical system, where the sites of a star’s mass loss can be localised and observed in detail, and where the behaviour of the resulting stellar wind in the star’s environment and around orbiting obstacles can be investigated in situ: it is the Sun, the heliosphere and the surroundings of planets — among the latter most prominently the terrestrial magnetosphere. Indeed, within a year or so a fleet of satellites equipped with sophisticated remote-sensing and in-situ instruments will make this astronomical paradigm, or more precisely, the solar-terrestrial system accessible to intensive, multi-disciplinary study.Four identical CLUSTER spacecraft, orbiting the Earth within the magnetosphere, the surrounding space and the particularly interesting plasma boundary layers will perform a three-dimensional in-situ study of plasma-heating, particle-acceleration and other small-scale plasma processes (Schmidt and Goldstein,1988). A number of other missions — some of them already in orbit, like GEOTAIL and WIND, some to be launched within one or two years, like INTERBALL and POLAR — will provide information about the Earth’s magnetosphere and the solar wind on larger spatial scales. These missions are described in a Brochure issued jointly by the European Space Agency, NASA, the Japanese Institute of Space and Astronomical Science and the Rssian Space Agency, which can be obtained from A. Pedersen at the above address.


1999 ◽  
Vol 6 (3/4) ◽  
pp. 179-186 ◽  
Author(s):  
H. Kojima ◽  
Y. Omura ◽  
H. Matsumoto ◽  
K. Miyaguti ◽  
T. Mukai

Abstract. We present the characteristics of the Electrostatic Solitary Waves (ESW) observed by the Geotail spacecraft in the plasma sheet boundary layer based on the statistical analyses. We also discuss the results referring to a model of ESW generation due to electron beams, which is proposed by computer simulations. In this generation model, the nonlinear evolution of Langmuir waves excited by electron bump-on-tail instabilities leads to formation of isolated electrostatic potential structures corresponding to "electron hole" in the phase space. The statistical analyses of the Geotail data, which we conducted under the assumption that polarity of ESW potentials is positive, show that most of ESW propagate in the same direction of electron beams, which are observed by the plasma instrument, simultaneously. Further, we also find that the ESW potential energy is much smaller than the background electron thermal energy and that the ESW potential widths are typically shorter than 60 times of local electron Debye length when we assume that the ESW potentials travel in the same velocity of electron beams. These results are very consistent with the ESW generation model that the nonlinear evolution of electron bump-on-tail instability leads to the formation of electron holes in the phase space.


1986 ◽  
Vol 164 ◽  
pp. 429-448 ◽  
Author(s):  
Victor Barcilon ◽  
Frank M. Richter

An investigation of the mathematical model of a compacting medium proposed by McKenzie (1984) for the purpose of understanding the migration and segregation of melts in the Earth is presented. The numerical observation that the governing equations admit solutions in the form of nonlinear one-dimensional waves of permanent shape is confirmed analytically. The properties of these solitary waves are presented, namely phase speed as a function of melt content, nonlinear interaction and conservation quantities. The information at hand suggests that these waves are not solitons.


Sign in / Sign up

Export Citation Format

Share Document