Evidences for Bimodal volcanism on 4-Vesta Asteroid from impact-melt clast

2020 ◽  
Author(s):  
Dwijesh Ray ◽  
Sambhunath Ghosh

<p>Silicic / acid volcanism has not been widely described either on Moon, Mars or in Asteroid 4 Vesta. The occurrence of sialic crustal rocks on the lunar surface is extremely limited. Reports on silicic (non-mare) volcanic rocks on Moon is found to be associated in Compton-Belkovich volcanic complex, Hansteen Alpha volcanic crater, Lassell massif, Gruithuisen domes and ejecta of Aristarchus crater (Clegg-Watkins et al., 2017). The occurrence of several volcanic constructs (e.g. collapse features, domes) and volatile-rich pyroclastics in association with silicic rocks further emphasize existence of viscous magmas on Moon. A localized occurrence of silicic volcanism on Mars is also envisaged by the presence of tridymite in mudstone of Gale crater (Morris et al., 2016). However, the exact formation mechanism of silicic volcanism on Moon, Mars or even in 4-Vesta has been largely hindered due to lack of silicic meteorite samples or mission-returned samples.</p> <p>The HED (Howardite, Eucrite, Diogenite) meteorites is considered to have originated from a common parent body Asteroid 4-Vesta. Recent Dawn mission also attempts to validate its geologic context and formulate a possible HED-Vesta connection (McSween et al., 2013). Based on Dawn findings, Vesta’s surface appears to be similar to a mixture of basaltic eucrite and diogenite resembling a more complex breccia howardite (De Sanctis et al., 2012; Prettyman et al., 2012). A variety of clasts are apparently common in howardite. Here, we report the petrography and major element geochemistry of a new impact-melt clast from Lohawat howardite. Our results show that the clast composition is unique and unlikely to be explained by typical impact melting of HED mafic lithologies. One of the impact melts (~20µ across) hosted in ferroaugite (Wo<sub>42</sub>En<sub>2.7</sub>Fs<sub>55.3</sub>) clast substantially differ in composition from the other impact-melt (~50µ across) hosted in ilmenite clast, specially in terms of SiO<sub>2</sub> wt%, CaO wt%, K<sub>2</sub>O wt% and K<sub>2</sub>O / (K<sub>2</sub>O + Na<sub>2</sub>O) ratio. Moreover, one appears nearly homogeneous in contrast to evolved nature with limited heterogeneity as compared to other. Both the melts are oblong-shaped, smooth textured with sharp outline and embedded in the host monomict mineral clast of different composition belonging to possible parent of cumulate eucrite.</p> <p>The average bulk composition of Lohawat is consistent with basaltic crusts (SiO<sub>2</sub> ~50.3-51.8 wt%, Al<sub>2</sub>O<sub>3</sub> ~3.5-8.2 wt%, total iron-magnesia ~31.2-38.0 wt%, CaO ~2.2-7.6 wt%) (Chattopadhyay et al. 1998; Sisodia et al. 2001; Ghosh, 2011). Supplement to basaltic volcanism, we report for the first time the incipient acid volcanism in a HED meteorite based on two impact melt inclusions of nearly rhyolitic composition (SiO<sub>2</sub> ~76-79.5 wt%, Al<sub>2</sub>O<sub>3 </sub>~11.4 - 12.8 wt%, total alkali ~3 - 8 wt% with K<sub>2</sub>O/ (Na<sub>2</sub>O + K<sub>2</sub>O) ~0.21-0.95, CaO ~ 0.8 - 4.67wt% and low total iron-magnesia ~1-2 wt%). Our study thus reinforces to conceive the idea that some rhyolitic crusts formed due to differentiation of mafic magma were exposed on Vesta and heterogeneity of Vestan surface is definitely different from one as previously thought.</p> <p>References: Clegg-Watkins, R.N. et al. 2016, Icarus 285:169-184. Morris, R.V. et al. 2016, 113:7071-7076. McSween, H.Y. et al. 2013, MAPS 48:2090-2104. De Sanctis, M.C. et al. 2012, Science 336:697-700. Prettyman, T.H. et al. 2012, Science 338:242-246. Chattopadhyay, B. et al. 1998. JGSI 51:171-174. Sisodia, M.S. et al. 2001 MAPS 36:1457-1466. Ghosh, S. IJG 65:251-264.</p>

1980 ◽  
Vol 35 (8) ◽  
pp. 781-795 ◽  
Author(s):  
John T. Wasson ◽  
John Willis ◽  
Chien M. Wai ◽  
Alfred Kracher

AbstractSeveral low-Ni iron meteorites previously assigned to group IAB are reclassified IIICD on the basis of lower Ge, Ga, W and Ir concentrations and higher As concentrations; the low-Ni extreme of IIICD is now 62 mg/g, that of IAB is 64 mg/g. The resulting fractionation patterns in the two groups are quite similar. It has long been established that, in contrast to the magmatic iron meteorite groups, IAB and IIICD did not form by fractional crystallization of a metallic magma. Other models have been proposed, but all have serious flaws. A new model is proposed involving the formation of each iron in small pools of impact melt on a parent body consisting of material similar to the chondritic inclusions found in some IAB and IIICD irons, but initially unequilibrated. These impact melts ranged in temperatures from ~ 1190 K to ~ 1350 K. The degree of equilibration between melt and unmelted solids ranged from minimal at the lowest temperature to moderate at the highest temperature. The lowest temperature melts were near the cotectic in the Fe-Ni-S system with Ni contents of ~ 12 atom %. Upon cooling, these precipitated metal having ~ 600 mg/g Ni by equilibrium crystallization. The Ni-rich melt resulted from the melting of Ni-rich sulfides and metal in the unequilibrated chondritic parent. Low-Ni irons formed in high temperature melts near the composition of the FeS-Fe eutectic or somewhat more metal rich. We suggest that the decreasing Ge, Ga and refractory abundances with increasing Ni concentration reflect the trapping of these elements in oxide phases in the unequilibrated chondritic material, and that very little entered the Ni-rich melt parental to the Oktibbeha County iron. The remaining elements tended to have element/Ni ratios in the melts that were more or less independent of temperature. The remarkable correlation between I-Xe age of the chondritic inclusions and Ni content of the host metal is explained by a detailed evolution of (mega)regolith in which these groups originated. The most Ni-rich melts could only be generated from an unequilibrated chondrite parent; as the continuing deposition of impact energy produced increasingly higher grades of metamorphism, the maximum Ni content of the impact melts (and their subsequently precipitated metal) gradually decreased.


2020 ◽  
Author(s):  
Alexander Kawohl ◽  
Hartwig E. Frimmel ◽  
Wesley E. Whymark ◽  
Andrejs Bite

<p>The 1.85 Ga Sudbury Igneous Complex, Canada, is the remnant of a ~3 km thick impact-generated crustal melt sheet, caused by a 10-15 km large chondritic asteroid or comet that had left behind an impact structure of ~200 km prior to tectonic deformation und subsequent erosion. However, less is known about how deep the impactor penetrated the continental crust and where the source of the impact melt was. Mixing models including radioisotopes and trace elements on locally exposed country rocks have been used to evaluate their relative contribution to the impact melt. Based on this, Darling et al. (2010) have argued for shallow melting of the upper crust (UCC) only, either due to an oblique impact and/or a low-density bolide (comet). In contrast, the abundance of siderophile elements in impact melt-rocks was taken as evidence of a lower crustal source (Mungall et al. 2004), i.e. overlying rocks of the middle and upper crust must have been removed during the crater excavation stage. U-Pb age data on zircon xenocrysts also point to the involvement of rock types not exposed on surface (Petrus et al. 2016) in agreement with theoretical simulations, which have predicted a >20 km deep but unstable transient cavity (Ivanov & Deutsch 1999).</p><p>Large-scale (10s of km) and well-exposed impact melt dykes are a unique feature of Sudbury. The dykes are of granodioritic/quartz dioritic composition and are interpreted as clast-laden melt injections into the basement instantaneously after the impact (Pilles et al. 2018). Their vitric margins and distal extremities should therefore approximate the undifferentiated bulk composition of the Sudbury Igneous Complex prior to sulfide saturation. A compilation of published and new geochemical data of these dykes reveal a remarkably strong affinity (r<sup>2</sup> >0.989) to the average middle continental crust (MCC) as given by Rudnick & Gao (2014), especially in terms of major elements and fluid-immobile transition metals (Th, Zr, Hf, Nb, Ta, Ti, Sc, REE). The dykes are, however, significantly enriched in Ni, Cu and Cr, and to a lesser extent in V, Co and P relative to the typical UCC and MCC. A systematic loss of volatiles (Tl, Cd, Sn, Zn, Pb, Ag, Cs, Rb, Na, K, Ga, As) compared to either crustal model is not evident. These new observations favour a scenario in which the impactor and supracrustal rocks in the target area became vaporized and ejected. Shock melting affected predominantly the middle crust of the Canadian Shield. We also propose that the rocks that contributed to the impact melt were, on average, more mafic than the typical UCC and MCC. This is consistent with the report of exotic mafic-ultramafic xenoliths within the Sudbury Igneous Complex (Wang et al. 2018) and its anomalously high PGE concentrations (Mungall et al. 2004). (Ultra-)mafic rocks hidden at mid-crustal depth were a likely source of Ni-Cu-PGE-Co and gave rise to world class ore deposits presently mined at Sudbury. Such (ultra-)mafic intrabasement body might also explain the 1200 km<sup>2</sup> Temagami magnetic anomaly in the eastern vicinity of the Sudbury Complex.</p>


2013 ◽  
Vol 48 (12) ◽  
pp. 2451-2468 ◽  
Author(s):  
Agnese Fazio ◽  
Massimo D'Orazio ◽  
Luigi Folco ◽  
Jérôme Gattacceca ◽  
Corinne Sonzogni

2019 ◽  
Vol 64 (8) ◽  
pp. 826-836
Author(s):  
S. N. Teplyakova ◽  
C. A. Lorenz

The metal of the IIE irons has evidence of fractionation in the depths of the asteroid, but the presence of a fine-grained structure is incompatible with its endogenous origin. It was assumed that the metal underwent remelting on the surface of the parent body. Data on the mineragraphy, mineral and chemical composition of IIE irons (Elga, Verkhnodniprovsk, Tobychan, Miles and Watson) indicate that the relatively fine-grained metal structure and xenomorphic schreibersite grains were probably formed by crystallization from the melt. According to the calculated data on the bulk composition of the Elga metal and on the Fe-Ni-P phase diagrams, the crystallization of the first γ-Fe grains began at ~1511°С and ended at ~1060–1100°С with the formation of polygonal crystals of cm-sized taenite and xenomorphic schreibersite along their boundaries. The identical composition of xenomorphic schreibersite, both along the borders of the taenite grains and on the rims around nonmetallic inclusions, indicates their simultaneous formation. Among four generations of schreibersite, the xenomorphic schreibersite is distinguished by a high Fe/Ni ratio. It is also noted that the higher the crystallization temperature of schreibersite, the less nickel content in this schreibersite. Similar metal structures were found in other types of meteorites: in the IAB irons and in metal of some mesosiderites, and the impact mechanism of formation is considered the most likely for them. Thus, the mechanism of formation of the IIE irons by shock remelting of fractionated metal and mixing with silicate fragments in the conditions of the parent surface may have analogues among other types of meteorites.


Author(s):  
Yuri Fedorov ◽  
Yuri Fedorov ◽  
Irina Dotsenko ◽  
Irina Dotsenko ◽  
Leonid Dmitrik ◽  
...  

The distribution and behavior of certain of trace elements in sea water is greatly affected by both physical, chemical and hydrometeorological conditions that are showed in the scientific works of prof. Yu.A. Fedorov with coauthors (1999-2015). Due to the shallow waters last factor is one of the dominant, during the different wind situation changes significantly the dynamics of water masses and interaction in the system “water – suspended matter – bottom sediments”.Therefore, the study of the behavior of the total iron in the water of the sea at different wind situation is relevant. The content of dissolved iron forms migration in The Sea of Azov water (open area) varies from 0.017 to 0.21 mg /dm3 (mean 0.053 mg /dm3) and in Taganrog Bay from 0.035 to 0.58 mg /dm3 (mean 0.11 mg /dm3) and it is not depending on weather conditions.The reduction in the overall iron concentration in the direction of the Taganrog Bay → The Sea of Azov (open area) is observed on average more than twice. The dissolved iron content exceeding TLV levels and their frequency of occurrence in the estuary, respectively, were higher compared with The Sea of Azov (open area).There is an increase in the overall iron concentration in the water of the Azov Sea on average 1.5 times during the storm conditions, due to the destruction of the structure of the upper layer and resuspension of bottom sediments, intensifying the transition of iron compounds in the solution.


Author(s):  
E. Thilliez ◽  
S. T. Maddison

AbstractNumerical simulations are a crucial tool to understand the relationship between debris discs and planetary companions. As debris disc observations are now reaching unprecedented levels of precision over a wide range of wavelengths, an appropriate level of accuracy and consistency is required in numerical simulations to confidently interpret this new generation of observations. However, simulations throughout the literature have been conducted with various initial conditions often with little or no justification. In this paper, we aim to study the dependence on the initial conditions of N-body simulations modelling the interaction between a massive and eccentric planet on an exterior debris disc. To achieve this, we first classify three broad approaches used in the literature and provide some physical context for when each category should be used. We then run a series of N-body simulations, that include radiation forces acting on small grains, with varying initial conditions across the three categories. We test the influence of the initial parent body belt width, eccentricity, and alignment with the planet on the resulting debris disc structure and compare the final peak emission location, disc width and offset of synthetic disc images produced with a radiative transfer code. We also track the evolution of the forced eccentricity of the dust grains induced by the planet, as well as resonance dust trapping. We find that an initially broad parent body belt always results in a broader debris disc than an initially narrow parent body belt. While simulations with a parent body belt with low initial eccentricity (e ~ 0) and high initial eccentricity (0 < e < 0.3) resulted in similar broad discs, we find that purely secular forced initial conditions, where the initial disc eccentricity is set to the forced value and the disc is aligned with the planet, always result in a narrower disc. We conclude that broad debris discs can be modelled by using either a dynamically cold or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.


2017 ◽  
Vol 466 ◽  
pp. 608-616 ◽  
Author(s):  
Joshua F. Snape ◽  
Alexander A. Nemchin ◽  
Jeremy J. Bellucci ◽  
Martin J. Whitehouse

Author(s):  
Felix M. Schulte ◽  
◽  
Axel Wittmann ◽  
Stefan Jung ◽  
Joanna V. Morgan ◽  
...  

AbstractCore from Hole M0077 from IODP/ICDP Expedition 364 provides unprecedented evidence for the physical processes in effect during the interaction of impact melt with rock-debris-laden seawater, following a large meteorite impact into waters of the Yucatán shelf. Evidence for this interaction is based on petrographic, microstructural and chemical examination of the 46.37-m-thick impact melt rock sequence, which overlies shocked granitoid target rock of the peak ring of the Chicxulub impact structure. The melt rock sequence consists of two visually distinct phases, one is black and the other is green in colour. The black phase is aphanitic and trachyandesitic in composition and similar to melt rock from other sites within the impact structure. The green phase consists chiefly of clay minerals and sparitic calcite, which likely formed from a solidified water–rock debris mixture under hydrothermal conditions. We suggest that the layering and internal structure of the melt rock sequence resulted from a single process, i.e., violent contact of initially superheated silicate impact melt with the ocean resurge-induced water–rock mixture overriding the impact melt. Differences in density, temperature, viscosity, and velocity of this mixture and impact melt triggered Kelvin–Helmholtz and Rayleigh–Taylor instabilities at their phase boundary. As a consequence, shearing at the boundary perturbed and, thus, mingled both immiscible phases, and was accompanied by phreatomagmatic processes. These processes led to the brecciation at the top of the impact melt rock sequence. Quenching of this breccia by the seawater prevented reworking of the solidified breccia layers upon subsequent deposition of suevite. Solid-state deformation, notably in the uppermost brecciated impact melt rock layers, attests to long-term gravitational settling of the peak ring.


Sign in / Sign up

Export Citation Format

Share Document