scholarly journals NIRPS: the Near-InfraRed Planet Searcher joining HARPS on the 3.6-m

2021 ◽  
Author(s):  
Nolan Grieves ◽  
François Bouchy ◽  
René Doyon ◽  
Etienne Artigau ◽  
Lison Malo ◽  
...  

<p>The Near-InfraRed Planet Searcher (NIRPS) is designed to be an ultra-stable infrared spectrograph to be installed on ESO’s 3.6 m Telescope in La Silla, Chile. NIRPS is an adaptive optics (AO) fiber-fed spectrograph operating from 0.98 to 1.8 μm and will be operated simultaneously with the optical high-resolution spectrograph HARPS. NIRPS can operate in two modes fed by two different fiber links permanently mounted at the Cassegrain focus that use either 0.4 arcsecond-fibers for the High Accuracy Mode (HAM) or 0.9 arcsecond-fibers for the High Efficiency Mode (HEM). The wavelength range of NIRPS is optimal for low-mass M dwarfs and the simultaneous NIRPS and HARPS observations will improve stellar activity filtering methods given their different wavelength coverages. The NIRPS front-end and AO system were already tested on-sky at La Silla. The spectrograph and back-end is being shipped to La Silla and installed in Summer/Fall 2021. Already we have adapted the state-of-the-art ESPRESSO data reduction pipeline for NIRPS, obtained accurate wavelength solutions with a Uranium Neon lamp, and obtained drift stability results below 50 cm/s with a Fabry–Pérot etalon. We discuss the current and expected instrument performance and the expected results of NIRPS.</p>

Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2020 ◽  
Vol 644 ◽  
pp. A114
Author(s):  
M. Kasper ◽  
K. K. R. Santhakumari ◽  
T. M. Herbst ◽  
R. van Boekel ◽  
F. Menard ◽  
...  

Aims. T Tauri remains an enigmatic triple star for which neither the evolutionary state of the stars themselves, nor the geometry of the complex outflow system is completely understood. Eight-meter class telescopes equipped with state-of-the-art adaptive optics provide the spatial resolution necessary to trace tangential motion of features over a timescale of a few years, and they help to associate them with the different outflows. Methods. We used J-, H-, and K-band high-contrast coronagraphic imaging with VLT-SPHERE recorded between 2016 and 2018 to map reflection nebulosities and obtain high precision near-infrared (NIR) photometry of the triple star. We also present H2 emission maps of the ν = 1-0 S(1) line at 2.122 μm obtained with LBT-LUCI during its commissioning period at the end of 2016. Results. The data reveal a number of new features in the system, some of which are seen in reflected light and some are seen in H2 emission; furthermore, they can all be associated with the main outflows. The tangential motion of the features provides compelling evidence that T Tauri Sb drives the southeast–northwest outflow. T Tauri Sb has recently faded probably because of increased extinction as it passes through the southern circumbinary disk. While Sb is approaching periastron, T Tauri Sa instead has brightened and is detected in all our J-band imagery for the first time.


2003 ◽  
Vol 211 ◽  
pp. 87-90
Author(s):  
M. Tamura ◽  
T. Naoi ◽  
Y. Oasa ◽  
Y. Nakajima ◽  
C. Nagashima ◽  
...  

We are currently conducting three kinds of IR surveys of star forming regions (SFRs) in order to seek for very low-mass young stellar populations. First is a deep JHKs-bands (simultaneous) survey with the SIRIUS camera on the IRSF 1.4m or the UH 2.2m telescopes. Second is a very deep JHKs survey with the CISCO IR camera on the Subaru 8.2m telescope. Third is a high resolution companion search around nearby YSOs with the CIAO adaptive optics coronagraph IR camera on the Subaru. In this contribution, we describe our SIRIUS camera and present preliminary results of the ongoing surveys with this new instrument.


2012 ◽  
Vol 8 (S293) ◽  
pp. 201-203
Author(s):  
Masashi Omiya ◽  
Bun'ei Sato ◽  
Hiroki Harakawa ◽  
Masayuki Kuzuhara ◽  
Teruyuki Hirano ◽  
...  

AbstractWe have a plan to conduct a Doppler planet search for low-mass planets around nearby middle-to-late M dwarfs using IRD. IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. We expect to achieve the accuracy of the radial velocity measurements of 1 m/s using IRD with a frequency comb as a wavelengh calibrator. Thus, we would detect super-Earths in habitable zone and low-mass rocky planets in close-in orbits around late-M dwarfs. In this survey, we aim to understand and discuss statistical properties of low-mass planets around low-mass M dwarfs compared with those derived from theoretical simulations.


2003 ◽  
Vol 211 ◽  
pp. 413-416 ◽  
Author(s):  
D. Ségransan ◽  
X. Delfosse ◽  
T. Forveille ◽  
J.L. Beuzit ◽  
C. Perrier ◽  
...  

We present new accurate masses at the bottom of the main sequence as well as an improved empirical mass-luminosity relation for very low mass stars in the visible and near infrared. Masses were obtained by combining very accurate radial velocities and adaptive optics images of multiple stars obtained at different orbital phases.


2020 ◽  
Vol 640 ◽  
pp. L12
Author(s):  
S. Y. Haffert ◽  
R. G. van Holstein ◽  
C. Ginski ◽  
J. Brinchmann ◽  
I. A. G. Snellen ◽  
...  

Context. Direct imaging provides a steady flow of newly discovered giant planets and brown dwarf companions. These multi-object systems can provide information about the formation of low-mass companions in wide orbits and/or help us to speculate about possible migration scenarios. Accurate classification of companions is crucial for testing formation pathways. Aims. In this work we further characterise the recently discovered candidate for a planetary-mass companion CS Cha b and determine if it is still accreting. Methods. MUSE is a four-laser-adaptive-optics-assisted medium-resolution integral-field spectrograph in the optical part of the spectrum. We observed the CS Cha system to obtain the first spectrum of CS Cha b. The companion is characterised by modelling both the spectrum from 6300 Å to 9300 Å and the photometry using archival data from the visible to the near-infrared (NIR). Results. We find evidence of accretion and outflow signatures in Hα and OI emission. The atmospheric models with the highest likelihood indicate an effective temperature of 3450 ± 50 K with a log g of 3.6 ± 0.5 dex. Based on evolutionary models, we find that the majority of the object is obscured. We determine the mass of the faint companion with several methods to be between 0.07 M⊙ and 0.71 M⊙ with an accretion rate of Ṁ = 4 × 10−11±0.4 M⊙ yr−1. Conclusions. Our results show that CS Cha B is most likely a mid-M-type star that is obscured by a highly inclined disc, which has led to its previous classification using broadband NIR photometry as a planetary-mass companion. This shows that it is important and necessary to observe over a broad spectral range to constrain the nature of faint companions.


2003 ◽  
Vol 211 ◽  
pp. 261-264 ◽  
Author(s):  
Melanie Freed ◽  
Laird M. Close ◽  
Nick Siegler

Using the adaptive optics system, Hōkūpa'a, at Gemini-North, we have directly imaged a companion around the UKIRT faint standard M8 star, LHS 2397a (FS 129) at a separation of 2.96 AU. Near-Infrared photometry obtained on the companion has shown it to be an L7.5 brown dwarf and confirmed the spectral type of the primary to be an M8. We also derive a substellar mass of the companion of 0.068M⊙, although masses in the range (0.061 – 0.069) are possible, and the primary mass as 0.090M⊙ (0.089 – 0.094). Reanalysis of archival imaging from HST has confirmed the secondary as a common proper motion object. This binary represents the first clear example of a brown dwarf companion within 4 AU of a low mass star, and should be the first L7.5 to have a dynamical mass. As part of a larger survey of M8-M9 stars, this object may indicate that there is no “brown dwarf desert” around low mass primaries.


2003 ◽  
Vol 211 ◽  
pp. 269-270
Author(s):  
M Goto ◽  
A.T. Tokunaga ◽  
M. Cushing ◽  
D. Potter ◽  
N. Kobayashi ◽  
...  

We present near-infrared spectroscopy of low-mass companions in the HD 130948 system (Goto et al. 2002a). Adaptive optics on the Subaru Telescope allowed for spectroscopy of the individual components of the 0″.13 binary system. Based on a direct comparison with a series of template spectra, we determined the spectral types of HD 130948B and C to be L4 ± 1. We find they are most likely a binary brown dwarf system.


2020 ◽  
Vol 498 (3) ◽  
pp. 3964-3974
Author(s):  
N Lodieu ◽  
C del Burgo ◽  
E Manjavacas ◽  
M R Zapatero Osorio ◽  
C Alvarez ◽  
...  

ABSTRACT We present Keck I/OSIRIS and Keck II/NIRC2 adaptive optics imaging of two member candidates of the Praesepe stellar cluster (d  =  186.18 ± 0.11 pc; 590–790 Myr), UGCS J08451066+2148171 (L1.5 ± 0.5) and UGCS J08301935+2003293 (no spectroscopic classification). We resolved UGCS J08451066+2148171 into a binary system in the near-infrared, with a K-band wavelength flux ratio of 0.89 ± 0.04 and a projected separation of 60.3 ± 1.3 mas (11.2 ± 0.7 au; 1σ). We also resolved UGCS J08301935+2003293 into a binary system with a flux ratio of 0.46 ± 0.03 and a separation of 62.5 ± 0.9 mas. Assuming zero eccentricity, we estimate minimum orbital periods of ∼100 yr for both systems. According to theoretical evolutionary models, we derive masses in the range of 0.074–0.078 and 0.072–0.076 M⊙ for the primary and secondary of UGCS J08451066+2148171 for an age of 700 ± 100 Myr. In the case of UGCS J08301935+2003293, the primary is a low-mass star at the stellar/substellar boundary (0.070–0.078 M⊙), while the companion candidate might be a brown dwarf (0.051–0.065 M⊙). These are the first two binaries composed of L dwarfs in Praesepe. They are benchmark systems to derive the location of the substellar limit at the age and metallicity of Praesepe, determine the age of the cluster based on the lithium depletion boundary test, derive dynamical masses, and improve low-mass stellar and substellar evolutionary models at a well-known age and metallicity.


2008 ◽  
Vol 4 (S253) ◽  
pp. 157-161 ◽  
Author(s):  
James P. Lloyd ◽  
Agnieszka Czeszumska ◽  
Jerry Edelstein ◽  
David Erskine ◽  
Michael Feuerstein ◽  
...  

AbstractThe TEDI (TripleSpec - Exoplanet Discovery Instrument) is a dedicated instrument for the near-infrared radial velocity search for planetary companions to low-mass stars with the goal of achieving meters-per-second radial velocity precision. Heretofore, such planet searches have been limited almost entirely to the optical band and to stars that are bright in this band. Consequently, knowledge about planetary companions to the populous but visibly faint low-mass stars is limited. In addition to the opportunity afforded by precision radial velocity searches directly for planets around low mass stars, transits around the smallest M dwarfs offer a chance to detect the smallest possible planets in the habitable zones of the parent stars. As has been the the case with followup of planet candidates detected by the transit method requiring radial velocity confirmation, the capability to undertake efficient precision radial velocity measurements of mid-late M dwarfs will be required. TEDI has been commissioned on the Palomar 200” telescope in December 2007, and is currently in a science verification phase.


Sign in / Sign up

Export Citation Format

Share Document