scholarly journals Six transiting planets and a chain of Laplace resonances in TOI-178

2021 ◽  
Author(s):  
Adrien Leleu

<p class="p1">Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. As unveiled by TESS, CHEOPS, ESPRESSO, NGTS and SPECULOOS, TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, all planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet. TOI-178 have hence several characteristics that were not previously observed in a single system, making it a key system for the study of processes of formation and evolution of planetary systems. We will review what we know of TOI-178, and what we expect from futur observations.</p>

2004 ◽  
Vol 213 ◽  
pp. 93-96
Author(s):  
Douglas A. Caldwell ◽  
William J. Borucki ◽  
Robert L. Showen ◽  
Jon M. Jenkins ◽  
Laurance Doyle ◽  
...  

We have developed and tested a wide-field photometer to detect extrasolar planet transits from the South Pole. The discovery of transiting planets for which masses can be measured by radial velocity is vital to constrain the models of planet formation and evolution. Short of going to space, the South Pole is the best site from which to carry out a such a survey. Based on results from the Doppler velocity surveys and the Vulcan transit search, we expect to detect 10 to 15 transiting planets in two years of operation at the South Pole.


2008 ◽  
Vol 677 (1) ◽  
pp. 630-656 ◽  
Author(s):  
Lynne A. Hillenbrand ◽  
John M. Carpenter ◽  
Jinyoung Serena Kim ◽  
Michael R. Meyer ◽  
Dana E. Backman ◽  
...  

2018 ◽  
Vol 14 (S345) ◽  
pp. 316-317 ◽  
Author(s):  
M. Mugrauer ◽  
C. Ginski ◽  
N. Vogt ◽  
R. Neuhäuser ◽  
C. Adam

AbstractIn order to determine the true impact of stellar multiplicity on the formation and evolution of planets, we initiated direct imaging surveys to search for (sub)stellar companions of exoplanet host stars on close orbits, as their gravitational impact on the planet bearing disk at first and on formed planets afterwards is expected to be maximal. According to theory these are the most challenging environments for planet formation and evolution but might occur quite frequently in the milky way, due to the large number of multiple stars within our galaxy. On this poster we showed results, obtained so far in the course of our AO and Lucky-imaging campaigns of exoplanet host stars, conducted with NACO/ESO-VLT for southern and with AstraLux/CAHA2.2m for northern targets, respectively. In addition, we introduced our new high contrast imaging survey with SPHERE/ESO-VLT to search for close companions of southern exoplanet host stars, and presented some first results.


2017 ◽  
Vol 13 (S334) ◽  
pp. 147-152
Author(s):  
Arlette Noels-Grötsch

AbstractAlthough a stellar age accuracy of about 10 % seems to be a reasonable requirement to draw a time line in the evolution of our Galaxy as well as in the formation and evolution of exo-planetary systems, theoretical stellar models are at present still too imperfect to really achieve this goal. Asteroseismic observations are definitely of invaluable assistance, especially if individual pulsation frequencies are available, which is still far from common. Large stellar samples are now in the spotlight with two different lines of attack, spectroscopic and photometric surveys as well as asteroseismic missions. I shall review the problems arising from stellar physics in the context of large stellar samples of main sequence and red giant stars, and I shall raise some alarm bells but also highlight some positive news for a drastic improvement in stellar age determinations below the limit of 10 % in a foreseeable future.


2017 ◽  
Vol 12 (S330) ◽  
pp. 369-376 ◽  
Author(s):  
Nuno C. Santos

AbstractThe detection of thousands of planets orbiting stars other than the Sun has shown that planets are common throughout the Galaxy. However, the diversity of systems found has also raised many questions regarding the process of planet formation and evolution. Interestingly, but perhaps not unexpectedly, crucial information to constraint the planet formation models comes from the analysis of the planet-host stars. In this talk I will review why it is so important to study and understand the stars when finding and characterising exoplanets. I will then present some of the most relevant star-planet relations found to date, and how they are helping us to understand planet formation and evolution. I will end with a presentation of the future steps in this field, including what Gaia will bring to help constrain the properties of planet-host stars, as well as to the star-planet connection.


2020 ◽  
Vol 634 ◽  
pp. A43 ◽  
Author(s):  
J. F. Otegi ◽  
F. Bouchy ◽  
R. Helled

The masses and radii of exoplanets are fundamental quantities needed for their characterisation. Studying the different populations of exoplanets is important for understanding the demographics of the different planetary types, which can then be linked to planetary formation and evolution. We present an updated exoplanet catalogue based on reliable, robust, and, as much as possible accurate mass and radius measurements of transiting planets up to 120 M⊕. The resulting mass-radius (M-R) diagram shows two distinct populations, corresponding to rocky and volatile-rich exoplanets which overlap in both mass and radius. The rocky exoplanet population shows a relatively small density variability and ends at mass of ~25 M⊕, possibly indicating the maximum core mass that can be formed. We use the composition line of pure water to separate the two populations, and infer two new empirical M-R relations based on this data: M = (0.9 ± 0.06) R(3.45±0.12) for the rocky population, and M = (1.74 ± 0.38) R(1.58±0.10) for the volatile-rich population. While our results for the two regimes are in agreement with previous studies, the new M-R relations better match the population in the transition region from rocky to volatile-rich exoplanets, which correspond to a mass range of 5–25 M⊕, and a radius range of 2–3 R⊕.


2007 ◽  
Vol 666 (1) ◽  
pp. 436-446 ◽  
Author(s):  
Nader Haghighipour ◽  
Sean N. Raymond

2003 ◽  
Vol 208 ◽  
pp. 25-35 ◽  
Author(s):  
Shigeru Ida ◽  
Eiichiro Kokubo ◽  
Junko Kominami

Accretion from many small planetesimals to planets is reviewed. Solid protoplanets accrete through runaway and oligarchic growth until they become isolated. The isolation mass of protoplanets in terrestrial planet region is about 0.1-0.2 Earth mass, which suggests giant impacts among the protoplanets in the final stage of terrestrial planet formation. On the other hand, the isolation mass in Jupiter's and Saturn's orbits is about a few to 5 Earth masses, which may be massive enough to trigger gas accretion onto the cores. The isolation mass in Uranus and Neptune's orbits is as large as their present cores. Extending the above arguments to extrasolar planetary systems that are formed from disks with various initial masses, we also discuss diversity of extrasolar planetary systems.


Sign in / Sign up

Export Citation Format

Share Document