scholarly journals Resolving ecological feedbacks on the ocean carbon sink in Earth system models

2021 ◽  
Vol 12 (3) ◽  
pp. 797-818
Author(s):  
David I. Armstrong McKay ◽  
Sarah E. Cornell ◽  
Katherine Richardson ◽  
Johan Rockström

Abstract. The Earth's oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a negative feedback on climate change. Earth system models project that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved CO2 and as biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here, we use a recently developed extension of the cGEnIE (carbon-centric Grid Enabled Integrated Earth system model), ecoGEnIE, featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on particulate organic carbon (POC) export in response to climate change. We find that including TDR increases cumulative POC export relative to default runs due to increased nutrient recycling (+∼1.3 %), whereas ECOGEM decreases cumulative POC export by enabling a shift to smaller plankton classes (-∼0.9 %). However, interactions with carbonate chemistry cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs (-∼1.0 %), whereas ECOGEM leads to a larger sink (+∼0.2 %). Combining TDR and ECOGEM results in a net strengthening of POC export (+∼0.1 %) and a net reduction in carbon sink (-∼0.7 %) relative to default. These results illustrate the degree to which ecological dynamics and biodiversity modulate the strength of the biological pump, and demonstrate that Earth system models need to incorporate ecological complexity in order to resolve non-linear climate–biosphere feedbacks.

2020 ◽  
Author(s):  
David I. Armstrong McKay ◽  
Sarah E. Cornell ◽  
Katherine Richardson ◽  
Johan Rockström

Abstract. The Earth’s oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a negative feedback on climate change. Earth system models predict, though, that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved CO2 and biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here we use a recently-developed extension of the cGEnIE Earth system model (ecoGEnIE) featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on the soft-tissue biological pump in response to climate change. We find that including TDR strengthens the biological pump relative to default runs due to increased nutrient recycling, while ECOGEM weakens the biological pump by enabling a shift to smaller plankton classes. However, interactions with concurrent ocean acidification cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs whereas ECOGEM leads to a larger sink. Combining TDR and ECOGEM results in a net strengthening of the biological pump and a small net reduction in carbon sink relative to default. These results clearly illustrate the substantial degree to which ecological dynamics and biodiversity modulate the strength of climate-biosphere feedbacks, and demonstrate that Earth system models need to incorporate more ecological complexity in order to resolve carbon sink weakening.


2015 ◽  
Vol 8 (4) ◽  
pp. 3235-3292 ◽  
Author(s):  
A. L. Atchley ◽  
S. L. Painter ◽  
D. R. Harp ◽  
E. T. Coon ◽  
C. J. Wilson ◽  
...  

Abstract. Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.


2021 ◽  
Author(s):  
Carolina Gallo Granizo ◽  
Jonathan Eden ◽  
Bastien Dieppois ◽  
Matthew Blackett

<p>Weather and climate play an important role in shaping global fire regimes and geographical distributions of burnable areas. At the global scale, fire danger is likely to increase in the near future due to warmer temperatures and changes in precipitation patterns, as projected by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). There is a need to develop the most reliable projections of future climate-driven fire danger to enable decision makers and forest managers to take both targeted proactive actions and to respond to future fire events.</p><p>Climate change projections generated by Earth System Models (ESMs) provide the most important basis for understanding past, present and future changes in the climate system and its impacts. ESMs are, however, subject to systematic errors and biases, which are not fully taken into account when developing risk scenarios for wild fire activity. Projections of climate-driven fire danger have often been limited to the use of single models or the mean of multi-model ensembles, and compared to a single set of observational data (e.g. one index derived from one reanalysis).</p><p>Here, a comprehensive global evaluation of the representation of a series of fire weather indicators in the latest generation of ESMs is presented. Seven fire weather indices from the Canadian Forest Fire Weather Index System were generated using daily fields realisations simulated by 25 ESMs from the 6<sup>th</sup> Coupled Model Intercomparison Project (CMIP6). With reference to observational and reanalysis datasets, we quantify the capacity of each model to realistically simulate the variability, magnitude and spatial extent of fire danger. The highest-performing models are identified and, subsequently, the limitations of combining models based on independency and equal performance when generating fire danger projections are discussed. To conclude, recommendations are given for the development of user- and policy-driven model evaluation at spatial scales relevant for decision-making and forest management.</p>


2021 ◽  
Author(s):  
Alexander J. Winkler ◽  
Ranga B. Myneni ◽  
Markus Reichstein ◽  
Victor Brovkin

<div> <div> <div> <p>The prevailing understanding of the carbon-cycle response to anthropogenic CO<sub>2 </sub>emissions suggests that it depends only on the magnitude of this forcing, not on its timing. However, a recent study (Winkler <em>et al</em>., <em>Earth System Dynamics</em>, 2019) demonstrated that the same magnitude of CO<sub>2 </sub>forcing causes considerably different responses in various Earth system models when realized following different temporal trajectories. Because the modeling community focuses on concentration-driven runs that do not represent a fully-coupled carbon-cycle-climate continuum, and the experimental setups are mainly limited to exponential forcing timelines, the effect of different temporal trajectories of CO<sub>2 </sub>emissions in the system is under-explored. Together, this could lead to an incomplete notion of the carbon-cycle response to anthropogenic CO<sub>2 </sub>emissions.</p> <p>We use the latest CMIP6 version of the Max-Planck-Institute Earth System Model (MPI-ESM1.2) with a fully-coupled carbon cycle to investigate the effect of emission timing in form of four drastically different pathways. All pathways emit an identical total of 1200 Pg C over 200 years, which is about the IPCC estimate to stay below 2 °K of warming, and the approximate amount needed to double the atmospheric CO<sub>2 </sub>concentration. The four pathways differ only in their CO<sub>2 </sub>emission rates, which include a constant, a negative parabolic (ramp-up/ramp-down), a linearly decreasing, and an exponentially increasing emission trajectory. These experiments are idealized, but designed not to exceed the observed maximum emission rates, and thus can be placed in the context of the observed system.</p> <p>We find that the resulting atmospheric CO<sub>2 </sub>concentration, after all the carbon has been emitted, can vary as much as 100 ppm between the different pathways. The simulations show that for pathways, where the system is exposed to higher rates of CO<sub>2 </sub>emissions early in the forcing timeline, there is considerably less excess CO<sub>2 </sub>in the atmosphere at the end. These pathways also show an airborne fraction approaching zero in the final decades of the simulation. At this point, the carbon sinks have reached a strength that removes more carbon from the atmosphere than is emitted. In contrast, the exponentially increasing pathway with high CO<sub>2 </sub>emission rates in the last decades of the simulation, the pathway usually studied, shows a fairly stable airborne fraction. We propose a new general framework to estimate the atmospheric growth rate of CO<sub>2 </sub>not only as a function of the emission rate, but also include the aspect of time the system has been exposed to excess CO<sub>2 </sub>in the atmosphere. As a result, the transient temperature response is a function not only of the cumulative CO<sub>2 </sub>emissions, but also of the time the system was exposed to the excess CO<sub>2</sub>. We also apply this framework to other Earth system models and observational records of CO<sub>2 </sub>concentration and emissions.</p> </div> </div> </div><div> <div> <div> <p>The Earth system is currently in a phase of increasing, nearly exponential CO<sub>2 </sub>forcing. The impact of excess CO<sub>2 </sub>exposure time could become apparent as we approach the point of maximum CO<sub>2 </sub>emission rate, affecting the achievability of the climate targets.</p> </div> </div> </div>


2012 ◽  
Vol 93 (4) ◽  
pp. 485-498 ◽  
Author(s):  
Karl E. Taylor ◽  
Ronald J. Stouffer ◽  
Gerald A. Meehl

The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.


Sign in / Sign up

Export Citation Format

Share Document