scholarly journals North Pacific subtropical sea surface temperature frontogenesis and its connection with the atmosphere above

2018 ◽  
Author(s):  
Leying Zhang ◽  
Haiming Xu ◽  
Jing Ma ◽  
Ning Shi ◽  
Jiechun Deng

Abstract. The frontogenesis of the North Pacific subtropical sea surface temperature front (NPSTF) occurring from October to the following February is examined quantitatively based on the mixed-layer energy budget equation, with a focus on its connection with the atmosphere above. Diagnosis results show that the net heat flux dominates the frontogenesis from October to December, while the meridional temperature advection in the ocean contributes equally as or even more than the net heat flux in January and February. The atmosphere is critical to the frontogenesis of the NPSTF, including the direct effect of the net heat flux and the indirect effect through the Aleutian low. Further analyses demonstrate that the latent heat flux (the shortwave radiation) dominates the net heat flux in October (from November to February). The meridional temperature advection in the ocean is mostly owing to the meridional Ekman convergence, which is related to the Aleutian low. Climatologically, the strengthening and southward migration of the Aleutian low from October to the following February are characterized by the acceleration and southward shift of the westerly wind to the south, respectively, which can drive southward ocean currents. Correspondingly, the southward ocean currents give the colder meridional advection to the north of the NPSTF in January and February, favoring the frontogenesis. In addition, the Aleutian low plays a role in transforming the dominant effect of the net heat flux to the joint effect of the meridional temperature advection and the net heat flux in January. CESM1.0.3 model with a slab ocean model further confirms the important influence of the atmosphere on the frontogenesis and on the meridional temperature advection.

2019 ◽  
Vol 10 (2) ◽  
pp. 261-270
Author(s):  
Leying Zhang ◽  
Haiming Xu ◽  
Jing Ma ◽  
Ning Shi ◽  
Jiechun Deng

Abstract. The net heat flux and meridional temperature advection in the ocean are two factors in the North Pacific subtropical sea surface temperature front (NPSTF) frontogenesis occurring from October to the following February. However, the relative importance of these two factors has been rarely explored. In this study, frontogenesis of the NPSTF is examined quantitatively based on the mixed-layer heat budget equation to clarify the relative importance of net heat flux and meridional temperature advection and to further explore its connection with the atmosphere above. Diagnosis results show that the net heat flux dominates the frontogenesis from October to December, while the meridional temperature advection in the ocean contributes equally as or even more than the net heat flux in January and February. The atmosphere is critical to the frontogenesis of the NPSTF, including the direct effect of the net heat flux and the indirect effect through the Aleutian low. Further analyses demonstrate that the latent heat flux (the shortwave radiation) dominates the net heat flux in October (from November to February). The meridional temperature advection in the ocean is mostly due to the meridional Ekman convergence, which is related to the Aleutian low. Climatologically, the strengthening and southward migration of the Aleutian low from October to the following February are characterized by the acceleration and southward shift of the westerly wind to the south, respectively, which can drive southward ocean currents. Correspondingly, the southward ocean currents provide for colder meridional advection to the north of the NPSTF in January and February, favoring frontogenesis. In addition, the Aleutian low plays a role in transforming the dominant effect of the net heat flux into the joint effect of meridional temperature advection and net heat flux in January.


2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


2021 ◽  
pp. 1-53
Author(s):  
Hua Li ◽  
Shengping He ◽  
Ke Fan ◽  
Yong Liu ◽  
Xing Yuan

AbstractThe Meiyu withdrawal date (MWD) is a crucial indicator of flood/drought conditions over East Asia. It is characterized by a strong interannual variability, but its underlying mechanism remains unknown. We investigated the possible effects of the winter sea surface temperature (SST) in the North Pacific Ocean on the MWD on interannual to interdecadal timescales. Both our observations and model results suggest that the winter SST anomalies associated with the MWD are mainly contributed by a combination of the first two leading modes of the winter SST in the North Pacific, which have a horseshoe shape (the NPSST). The statistical results indicate that the intimate linkage between the NPSST and the MWD has intensified since the early 1990s. During the time period 1990–2016, the NPSST-related SST anomalies persisted from winter to the following seasons and affected the SST over the tropical Pacific in July. Subsequently, the SST anomalies throughout the North Pacific strengthened the southward migration of the East Asian jet stream (EAJS) and the southward and westward replacement of the western North Pacific subtropical high (WPSH), leading to an increase in Meiyu rainfall from July 1 to 20. More convincingly, the anomalous EAJS and WPSH induced by the SST anomalies can be reproduced well by numerical simulations. By contrast, the influence of the NPSST on the EASJ and WPSH were not clear between 1961 and 1985. This study further illustrates that the enhanced interannual variability of the NPSST may be attributed to the more persistent SST anomalies during the time period 1990–2016.


Sign in / Sign up

Export Citation Format

Share Document