scholarly journals Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

2014 ◽  
Vol 5 (2) ◽  
pp. 271-293 ◽  
Author(s):  
A. Levermann ◽  
R. Winkelmann ◽  
S. Nowicki ◽  
J. L. Fastook ◽  
K. Frieler ◽  
...  

Abstract. The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.

2013 ◽  
Vol 4 (2) ◽  
pp. 1117-1168 ◽  
Author(s):  
A. Levermann ◽  
R. Winkelmann ◽  
S. Nowicki ◽  
J. L. Fastook ◽  
K. Frieler ◽  
...  

Abstract. The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP) using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. The uncertainty in the climatic forcing, the oceanic response and the ice-model response is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The uncertainty range we derived for the Antarctic contribution to global sea-level rise from 1992 to 2011 is in full agreement with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time delayed warming of the oceanic subsurface compared with the surface air temperature. The median of the additional ice-loss for the 21st century (Table 6) is 0.07 m (66%-range: 0.02–0.14 m; 90%-range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 scenario and 0.09 m (66%-range: 0.04–0.21 m; 90%-range: 0.01–0.37 m) for the strongest RCP-8.5 if models with explicit ice-shelf representation are applied. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models. Without this time delay the values increase to 0.09 m (66%-range: 0.04–0.17 m; 90%-range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66%-range: 0.07–0.28 m; 90%-range: 0.04–0.43 m) for RCP-8.5. Our results are scenario dependent which is most visible in the upper percentiles of the distribution, i.e. highest contributions to sea level rise. All probability distributions, as provided in Fig. 12, are highly skewed towards high values. The applied ice-sheet models are coarse-resolution with limitations in the representation of grounding-line motion. However, we find the main uncertainty to be introduced by the external forcing to the ice-sheets, i.e. the climatic and oceanic uncertainty dominate. The scaling coefficients for the four different drainage basins provide valuable information for further assessments of future Antarctic ice discharge.


2012 ◽  
Vol 6 (4) ◽  
pp. 3447-3489 ◽  
Author(s):  
A. Levermann ◽  
R. Winkelmann ◽  
S. Nowicki ◽  
J. L. Fastook ◽  
K. Frieler ◽  
...  

Abstract. The largest uncertainty in projections of future sea-level change still results from the potentially changing dynamical ice discharge from Antarctica. While ice discharge can alter through a number of processes, basal ice-shelf melting induced by a warming ocean has been identified as a major if not the major cause for possible additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting using experiments carried out within the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. As used here these response functions provide separate contributions for four different Antarctic drainage regions. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP) using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. Uncertainty in the climatic forcing, the oceanic response and the ice-model differences is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The additional ice-loss (Table 6) is clearly scenario-dependent and results in a median of 0.07 m (66%-range: 0.04–0.10 m; 90%-range: −0.01–0.26 m) of global sea-level equivalent for the low-emission RCP-2.6 scenario and yields 0.1 m (66%-range: 0.06–0.14 m; 90%-range: −0.01–0.45 m) for the strongest RCP-8.5. If only models with an explicit representation of ice-shelves are taken into account the scenario dependence remains and the values change to: 0.05 m (66%-range: 0.03–0.08 m) for RCP-2.6 and 0.07 m (66%-range: 0.04–0.11 m) for RCP-8.5. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models. Without this time delay the ranges for all ice-models changes to 0.10 m (66%-range: 0.07–0.12 m; 90%-range: 0.01–0.28 m) for RCP-2.6 and 0.15 m (66%-range: 0.10–0.21 m; 90%-range: 0.02–0.53 m) for RCP-8.5. All probability distributions as provided in Fig. 10 are highly skewed towards high values.


2012 ◽  
Vol 6 (5) ◽  
pp. 3903-3935 ◽  
Author(s):  
A. S. Drouet ◽  
D. Docquier ◽  
G. Durand ◽  
R. Hindmarsh ◽  
F. Pattyn ◽  
...  

Abstract. Marine ice sheet stability is mostly controlled by the dynamics of the grounding line, i.e., the junction between the grounded ice sheet and the floating ice shelf. Grounding line migration has been investigated in the framework of MISMIP (Marine Ice Sheet Model Intercomparison Project), which mainly aimed at investigating steady state solutions. Here we focus on transient behaviour, executing short-term simulations (200 yr) of a steady ice sheet perturbed by the release of the buttressing restraint exerted by the ice shelf on the grounded ice upstream. The transient grounding line behaviour of four different flowline ice sheet models has been compared. The models differ in the physics implemented (full-Stokes and Shallow Shelf Approximation), the numerical approach, as well as the grounding line treatment. Their overall response to the loss of buttressing is found to be consistent in terms of grounding line position, rate of surface elevation change and surface velocity. However, large discrepancies (>100%) are observed in terms of ice sheet contribution to sea level. Despite the recent important improvements of marine ice sheet models in their ability to compute steady-state configurations, our results question models' capacity to compute reliable sea-level rise projections.


2013 ◽  
Vol 7 (2) ◽  
pp. 395-406 ◽  
Author(s):  
A. S. Drouet ◽  
D. Docquier ◽  
G. Durand ◽  
R. Hindmarsh ◽  
F. Pattyn ◽  
...  

Abstract. Marine ice-sheet stability is mostly controlled by the dynamics of the grounding line, i.e. the junction between the grounded ice sheet and the floating ice shelf. Grounding line migration has been investigated within the framework of MISMIP (Marine Ice Sheet Model Intercomparison Project), which mainly aimed at investigating steady state solutions. Here we focus on transient behaviour, executing short-term simulations (200 yr) of a steady ice sheet perturbed by the release of the buttressing restraint exerted by the ice shelf on the grounded ice upstream. The transient grounding line behaviour of four different flowline ice-sheet models has been compared. The models differ in the physics implemented (full Stokes and shallow shelf approximation), the numerical approach, as well as the grounding line treatment. Their overall response to the loss of buttressing is found to be broadly consistent in terms of grounding line position, rate of surface elevation change and surface velocity. However, still small differences appear for these latter variables, and they can lead to large discrepancies (> 100%) observed in terms of ice sheet contribution to sea level when cumulated over time. Despite the recent important improvements of marine ice-sheet models in their ability to compute steady state configurations, our results question the capacity of these models to compute short-term reliable sea-level rise projections.


2021 ◽  
Vol 15 (2) ◽  
pp. 1031-1052
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas

Abstract. The Antarctic ice sheet's contribution to global sea level rise over the 21st century is of primary societal importance and remains largely uncertain as of yet. In particular, in the recent literature, the contribution of the Antarctic ice sheet by 2100 can be negative (sea level fall) by a few centimetres or positive (sea level rise), with some estimates above 1 m. The Ice Sheet Model Intercomparison Project for the Coupled Model Intercomparison Project – phase 6 (ISMIP6) aimed at reducing the uncertainties in the fate of the ice sheets in the future by gathering various ice sheet models in a common framework. Here, we present the GRISLI-LSCE (Grenoble Ice Sheet and Land Ice model of the Laboratoire des Sciences du Climat et de l'Environnement) contribution to ISMIP6-Antarctica. We show that our model is strongly sensitive to the climate forcing used, with a contribution of the Antarctic ice sheet to global sea level rise by 2100 that ranges from −50 to +150 mm sea level equivalent (SLE). Future oceanic warming leads to a decrease in thickness of the ice shelves, resulting in grounding-line retreat, while increased surface mass balance partially mitigates or even overcompensates the dynamic ice sheet contribution to global sea level rise. Most of the ice sheet changes over the next century are dampened under low-greenhouse-gas-emission scenarios. Uncertainties related to sub-ice-shelf melt rates induce large differences in simulated grounding-line retreat, confirming the importance of this process and its representation in ice sheet models for projections of the Antarctic ice sheet's evolution.


2020 ◽  
Vol 117 (40) ◽  
pp. 24735-24741 ◽  
Author(s):  
Stef Lhermitte ◽  
Sainan Sun ◽  
Christopher Shuman ◽  
Bert Wouters ◽  
Frank Pattyn ◽  
...  

Pine Island Glacier and Thwaites Glacier in the Amundsen Sea Embayment are among the fastest changing outlet glaciers in West Antarctica with large consequences for global sea level. Yet, assessing how much and how fast both glaciers will weaken if these changes continue remains a major uncertainty as many of the processes that control their ice shelf weakening and grounding line retreat are not well understood. Here, we combine multisource satellite imagery with modeling to uncover the rapid development of damage areas in the shear zones of Pine Island and Thwaites ice shelves. These damage areas consist of highly crevassed areas and open fractures and are first signs that the shear zones of both ice shelves have structurally weakened over the past decade. Idealized model results reveal moreover that the damage initiates a feedback process where initial ice shelf weakening triggers the development of damage in their shear zones, which results in further speedup, shearing, and weakening, hence promoting additional damage development. This damage feedback potentially preconditions these ice shelves for disintegration and enhances grounding line retreat. The results of this study suggest that damage feedback processes are key to future ice shelf stability, grounding line retreat, and sea level contributions from Antarctica. Moreover, they underline the need for incorporating these feedback processes, which are currently not accounted for in most ice sheet models, to improve sea level rise projections.


2020 ◽  
Author(s):  
Thomas Kleiner ◽  
Jeremie Schmiedel ◽  
Angelika Humbert

<p>Ice sheets constitute the largest and most uncertain potential source of future sea-level rise. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) brings together a consortium of international ice sheet and climate models to explore the contribution from the Greenland and Antarctic ice sheets to future sea-level rise.</p> <p>We use the Parallel Ice Sheet Model (PISM, pism-docs.org) to carry out spinup and projection simulations for the Antarctic Ice Sheet. Our treatment of the ice-ocean boundary condition previously based on 3D ocean temperatures (initMIP-Antarctica) has been adopted to use the ISMIP6 parameterisation and 3D ocean forcing fields (temperature and salinity) according to the ISMIP6 protocol.</p> <p>In this study, we analyse the impact of the choices made during the model initialisation procedure on the initial state. We present the AWI PISM results of the ISMIP6 projection simulations and investigate the ice sheet response for individual basins. In the analysis, we distinguish between the local and non-local ice shelf basal melt parameterisation.</p>


2017 ◽  
Vol 63 (242) ◽  
pp. 959-972
Author(s):  
METTE K. GILLESPIE ◽  
WENDY LAWSON ◽  
WOLFGANG RACK ◽  
BRIAN ANDERSON ◽  
DONALD D. BLANKENSHIP ◽  
...  

ABSTRACTThe Darwin–Hatherton Glacial system (DHGS) connects the East Antarctic Ice Sheet (EAIS) with the Ross Ice Shelf and is a key area for understanding past variations in ice thickness of surrounding ice masses. Here we present the first detailed measurements of ice thickness and grounding zone characteristics of the DHGS as well as new measurements of ice velocity. The results illustrate the changes that occur in glacier geometry and ice flux as ice flows from the polar plateau and into the Ross Ice Shelf. The ice discharge and the mean basal ice shelf melt for the first 8.5 km downstream of the grounding line amount to 0.24 ± 0.05 km3 a−1 and 0.3 ± 0.1 m a−1, respectively. As the ice begins to float, ice thickness decreases rapidly and basal terraces develop. Constructed maps of glacier geometry suggest that ice drainage from the EAIS into the Darwin Glacier occurs primarily through a deep subglacial canyon. By contrast, ice thins to <200 m at the head of the much slower flowing Hatherton Glacier. The glaciological field study establishes an improved basis for the interpretation of glacial drift sheets at the link between the EAIS and the Ross Ice Sheet.


Sign in / Sign up

Export Citation Format

Share Document