scholarly journals The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins

2018 ◽  
Vol 9 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Jorge Eiras-Barca ◽  
Alexandre M. Ramos ◽  
Joaquim G. Pinto ◽  
Ricardo M. Trigo ◽  
Margarida L. R. Liberato ◽  
...  

Abstract. The explosive cyclogenesis of extratropical cyclones and the occurrence of atmospheric rivers are characteristic features of a baroclinic atmosphere, and are both closely related to extreme hydrometeorological events in the mid-latitudes, particularly on coastal areas on the western side of the continents. The potential role of atmospheric rivers in the explosive cyclone deepening has been previously analysed for selected case studies, but a general assessment from the climatological perspective is still missing. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific basins for the extended winter months (ONDJFM). Atmospheric rivers are identified for almost 80 % of explosive deepening cyclones. For non-explosive cyclones, atmospheric rivers are found only in roughly 40 % of the cases. The analysis of the time evolution of the high values of water vapour flux associated with the atmospheric river during the cyclone development phase leads us to hypothesize that the identified relationship is the fingerprint of a mechanism that raises the odds of an explosive cyclogenesis occurrence and not merely a statistical relationship. These new insights on the relationship between explosive cyclones and atmospheric rivers may be helpful to a better understanding of the associated high-impact weather events.

2017 ◽  
Author(s):  
Jorge Eiras-Barca ◽  
Alexandre M. Ramos ◽  
Joaquim G. Pinto ◽  
Ricardo M. Trigo ◽  
Margarida L. R. Liberato ◽  
...  

Abstract. The explosive cyclogenesis of extra-tropical cyclones and the occurrence of atmospheric rivers are characteristic features of baroclinic atmospheres, and are both closely related to extreme hydrometeorological events in the mid-latitudes, particularly on coastal areas on the western side of the continents. The potential role of atmospheric rivers in the explosive cyclone deepening has been previously analysed for selected case studies, but a general assessment from the climatological perspective is still missing. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific Basins for the extended winter months (ONDJFM). Atmospheric rivers are identified for almost 80 % of explosive deepening cyclones. For non-explosive cyclones, atmospheric rivers are found only in roughly 40 % of the cases. The analysis of the time evolution of the high values of water vapour flux associated with the atmospheric river during the cyclone development phase leads us to hypothesize that the identified relationship is the fingerprint of a mechanism that raises the odds of an explosive cyclogenesis occurrence and not merely a statistical relationship. This insight can be helpful for the predictability of high impact weather associated with explosive cyclones and atmospheric rivers.


2017 ◽  
Author(s):  
Jorge Eiras-Barca ◽  
Alexandre M. Ramos ◽  
Joaquim G. Pinto ◽  
Ricardo M. Trigo ◽  
Margarida L. R. Liberato ◽  
...  

2014 ◽  
Vol 28 (1) ◽  
pp. 168-185 ◽  
Author(s):  
Gereon Gollan ◽  
Richard J. Greatbatch

Abstract Variations in the global tropospheric zonal-mean zonal wind [U] during boreal winter are investigated using rotated empirical orthogonal functions applied to monthly means. The first two modes correspond to the northern and southern annular mode and modes 3 and 4 represent variability in the tropics. One is related to El Niño–Southern Oscillation and the other has variability that is highly correlated with the time series of [U] at 150 hPa between 5°N and 5°S [U150]E and is related to activity of the Madden–Julian oscillation. The extratropical response to [U150]E is investigated using linear regressions of 500-hPa geopotential height onto the [U150]E time series. Use is made of reanalysis data and of the ensemble mean output from a relaxation experiment using the European Centre for Medium-Range Weather Forecasts model in which the tropical atmosphere is relaxed toward reanalysis data. The regression analysis reveals that a shift of the Aleutian low and a wave train across the North Atlantic are associated with [U150]E. It is found that the subtropical waveguides and the link between the North Pacific and North Atlantic are stronger during the easterly phase of [U150]E. The wave train over the North Atlantic is associated with Rossby wave sources over the subtropical North Pacific and North America. Finally, it is shown that a linear combination of both [U150]E and the quasi-biennial oscillation in the lower stratosphere can explain the circulation anomalies of the anomalously cold European winter of 1962/63 when both were in an extreme easterly phase.


2020 ◽  
Vol 148 (10) ◽  
pp. 4035-4059
Author(s):  
Kevin C. Prince ◽  
Clark Evans

AbstractWhile it is understood that a recurving tropical cyclone (TC) that interacts with the midlatitude flow can cause large changes to the midlatitude flow pattern, it is much less understood if, and how, such events could impact a downstream tropical cyclone. Here, an indirect TC interaction is defined as one in which a primary TC perturbs the downstream midlatitude waveguide within one synoptic-scale wavelength of a secondary TC. In this study, a climatology and composite analysis using ERA-Interim reanalysis data is completed for all indirect interactions occurring between two tropical and/or subtropical cyclones in the North Atlantic and western North Pacific basins between 1989 and 2018. In all, 26 cases are identified in the North Atlantic and 56 cases are identified in the western North Pacific. The composite-mean interaction between a primary TC and upstream trough amplifies the immediate downstream ridge, increasing the tropospheric-deep vertical wind shear on its poleward and, in the western North Pacific, eastern, and equatorward flanks. An amplified downstream trough is detectable farther downstream in the western North Pacific 1–2 days after interaction onset; however, the same is not true in the North Atlantic, in which some cases exhibit anticyclonic Rossby wave breaking of the immediate downstream ridge. Secondary TCs that weaken following the indirect-interaction events are primarily located along the gradient between the downstream ridge and trough (North Atlantic) or at high latitudes (western North Pacific); those that strengthen are primarily located equatorward of the downstream ridge, particularly in the western North Pacific.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1252
Author(s):  
Jie Zhang ◽  
Yinglai Jia ◽  
Rui Ji ◽  
Yifei Wu

The North Atlantic tripole (NAT) is the leading mode of sea-surface temperature (SST) in the decadal time scale. Although the NAT is forced by North Atlantic oscillation (NAO), it also has an effect on the atmosphere; for example, the early winter tripole SST signal can influence storm tracks in March. As the NAT not only changes the baroclinicity of the lower layer but also modifies the moisture being released into the atmosphere, we surmise that the NAT has an impact on moisture transport and atmospheric rivers in the decadal time scale. Using ERA5 reanalysis data, the decadal variations in Atmospheric Rivers (ARs) in the North Atlantic in boral winter in relation to NAT phases were studied. During the positive NAT phase, the positive SST in the central and western North Atlantic increases the humidity and causes an anticyclonic wind response, which enhances the northeastward transport of moisture. As a result, ARs tend to be longer and transport more moisture toward northwestern Europe. This causes enhanced extreme rain in the UK and Norway. During the negative NAT phase, the positive SST anomalies in the south and east of the North Atlantic provide more moisture, induce a southward shift of the ARs and enhance extreme rain in the Iberian Peninsula. The Gulf Stream (GS) front is stronger during the negative NAT phase, increasing the frequency of the atmospheric front and enlarging the rain rate in ARs.


2010 ◽  
Vol 23 (24) ◽  
pp. 6468-6484 ◽  
Author(s):  
John T. Allen ◽  
Alexandre B. Pezza ◽  
Mitchell T. Black

Abstract A global climatology for rapid cyclone intensification has been produced from the second NCEP reanalysis (NCEP2), the 25-yr Japanese Reanalysis (JRA-25), and the ECMWF reanalyses over the period 1979–2008. An improved (combined) criterion for identifying explosive cyclones has been developed based on preexisting definitions, offering a more balanced, normalized climatological distribution. The combined definition was found to significantly alter the population of explosive cyclones, with a reduction in “artificial” systems, which are found to compose 20% of the population determined by earlier definitions. Seasonally, winter was found to be the dominant formative period in both hemispheres, with a lower degree of interseasonal variability in the Southern Hemisphere (SH). Considered over the period 1979–2008, little change is observed in the frequency of systems outside of natural interannual variability in either hemisphere. Significant statistical differences have been found between reanalyses in the SH, while in contrast the Northern Hemisphere (NH) was characterized by strong positive correlations between reanalyses in almost all examined cases. Spatially, explosive cyclones are distributed into several distinct regions, with two regions in the northwest Pacific and the North Atlantic in the NH and three main regions in the SH. High-resolution and modern reanalysis data were also found to increase the climatology population of rapidly intensifying systems. This indicates that the reanalyses have apparently undergone increasing improvements in consistency over time, particularly in the SH.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


Sign in / Sign up

Export Citation Format

Share Document