scholarly journals Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

2013 ◽  
Vol 4 (1) ◽  
pp. 355-392 ◽  
Author(s):  
Y. Wada ◽  
D. Wisser ◽  
M. F. P. Bierkens

Abstract. To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs) have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979–2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

2014 ◽  
Vol 5 (1) ◽  
pp. 15-40 ◽  
Author(s):  
Y. Wada ◽  
D. Wisser ◽  
M. F. P. Bierkens

Abstract. To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979–2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.


Water Policy ◽  
2012 ◽  
Vol 14 (4) ◽  
pp. 709-724 ◽  
Author(s):  
Andrew Ross

Integrated management of surface water and groundwater can provide efficient and flexible use of water through wet and dry periods, and address the impacts of water use on other users and the environment. It can also help adaptation to climate variation and uncertainty by means of supply diversification, storage and exchange. Integrated water management is affected by surface water and groundwater resources and their connections, water use, infrastructure, governance arrangements and interactions. Although the Murray–Darling Basin is considered to be a leading example of integrated water management, surface water and groundwater resources are generally managed separately. Key reasons for this separation include the historical priority given to surface water development, the relative neglect of groundwater management, shortfalls in information about connections between groundwater and surface water and their impacts, gaps and exemptions in surface water and groundwater use entitlements and rules, coordination problems, and limited stakeholder engagement. Integration of surface water and groundwater management can be improved by the establishment of more comprehensive water use entitlements and rules, with extended carry-over periods and legislated rules for aquifer storage and recovery. Collective surface water and groundwater management offers greater efficiency and better risk management than uncoordinated individual action. There are opportunities for more effective engagement of stakeholders in planning and implementation through decentralized catchment scale organizations.


2021 ◽  
Vol 42 (17) ◽  
pp. 6628-6669
Author(s):  
Indrani Choudhury ◽  
B.K. Bhattacharya ◽  
R. Eswar ◽  
M. Sekhar

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2009
Author(s):  
Caroline Ednah Mwebaze ◽  
Jackson-Gilbert Mwanjalolo Majaliwa ◽  
Joshua Wanyama ◽  
Geoffrey Gabiri

Limited studies in East Africa and particularly in Uganda have been carried out to determine and map water use and demands. This study aimed at assessing the impact of management options on sustainable water allocation in environmentally sensitive catchments of Mubuku and Sebwe of Lake Edward-George basin in Western Uganda. We used hydro-meteorological data analysis techniques to quantify the available water. We applied Mike Hydro model to allocate water to the different ongoing developments in the catchment based on 2015 and 2040 water demand management scenarios. We used the Nile Basin Decision Support System to assess the sustainability of the different water management scenarios for sustainable water resources use. Reliability computation did not consider hydropower in this study. Results show that water available in 2015 was 60 MCM/YR and 365 MCM/YR for Sebwe and Mubuku, respectively and is projected to decrease by 15% and 11% by the year 2040 under climate scenario RCP8.5. We project water demand to rise by 64% for domestic, 44% for livestock, 400% for industry, 45% for hydro power and 66% for irrigation by 2040. Mubuku water demand is projected to increase from 5.2 MCM in 2015 to 10.7 MCM in 2040. Mubuku available water is projected to fall from 364.8 to 329.8 MCM per annum. Sebwe water demand is projected to increase from 9.7 MCM in 2015 to 22.2 MCM in 2040 and its available water is projected to fall from 60 to 52 MCM per annum by the year 2040 from 2015. Water managers ought to allocate water based on the reliable water allocation which prioritizes domestic and environmental water demands, allocates 90% of industrial demand, 70% of irrigation and 60% of livestock demand. We recommend institutionalizing this model to guide water allocation in the Mubuku-Sebwe sub catchments. Water users should employ more efficient water use techniques to achieve high reliability and sustainable water resources management.


1986 ◽  
Vol 7 (2) ◽  
pp. 128-144 ◽  
Author(s):  
S.O. Ojo ◽  
M. Ijioma ◽  
A.O. Ojo

Water Policy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 886-907 ◽  
Author(s):  
Brian D. Richter ◽  
James D. Brown ◽  
Rachel DiBenedetto ◽  
Adrianna Gorsky ◽  
Emily Keenan ◽  
...  

As water scarcity worsens globally, there is growing interest in finding ways to reduce water consumption, and for reallocating water savings to other uses including environmental restoration. Because irrigated agriculture is responsible for more than 90% of all consumptive water use in water-scarce regions, much attention is being focused on opportunities to save water on irrigated farms. At the same time, many recent journal articles have expressed concern that claims of water-saving potential in irrigation systems lack technical credibility, or are at least exaggerated, due to failures to properly account for key elements of water budgets such as return flows. Critics have also asserted that opportunities for reallocating irrigation savings to other uses are limited because any freed-up water is taken up by other farmers. A comprehensive literature and internet survey was undertaken to identify well-documented studies of water-saving strategies in irrigated agriculture, as well as a review of case studies in which water savings have been successfully transferred to other uses. Our findings suggest that there is in fact considerable potential to reduce consumptive water use in irrigation systems when proper consideration is given to water budget accounting, and those savings can be beneficially reallocated to other purposes.


Sign in / Sign up

Export Citation Format

Share Document