scholarly journals CARINA oxygen data in the Atlantic Ocean

2009 ◽  
Vol 1 (1) ◽  
pp. 87-100 ◽  
Author(s):  
I. Stendardo ◽  
N. Gruber ◽  
A. Körtzinger

Abstract. In the CARINA (Carbon dioxide in the Atlantic Ocean) project, a new dataset with many previously unpublished hydrographic data from the Atlantic, Arctic and Southern Ocean was assembled and subjected to careful quality control (QC) procedures. Here, we present the dissolved oxygen measurements in the Atlantic region of the dataset and describe in detail the secondary QC procedures that aim to ensure that the data are internally consistent. This is achieved by a cross-over analysis, i.e. the comparison of deep ocean data at places that were sampled by different cruises at different times. Initial adjustments to the individual cruises were then determined by an inverse procedure that computes a set of adjustments that requires the minimum amount of adjustment and at the same time reduces the offsets in an optimal manner. The initial adjustments were then reviewed by the CARINA members, and only those that passed the following two criteria were adopted: (i) the region is not subject to substantial temporal variability, and (ii) the adjustment must be based on at least three stations from each cruise. No adjustment was recommended for cruises that did not fit these criteria. The final CARINA-Oxygen dataset has 103414 oxygen samples from 9491 stations obtained during 98 cruises covering three decades. The sampling density of the oxygen data is particularly good in the North Atlantic north of about 40° N especially after 1987. In contrast, the sample density in the South Atlantic is much lower. Some cruises appear to have poor data quality, and were subsequently omitted from the adjusted dataset. Of the data included in the adjusted dataset, 20% were adjusted with a mean adjustment of 2%. Due to the achieved internal consistency, the resulting product is well suited to produce an improved climatology or to study long-term changes in the oxygen content of the ocean. However, the adjusted dataset is not necessarily better suited than the unadjusted data to address questions that require a high level of accuracy, such as the computation of the saturation state.

2009 ◽  
Vol 2 (1) ◽  
pp. 103-135 ◽  
Author(s):  
I. Stendardo ◽  
N. Gruber ◽  
A. Körtzinger

Abstract. In the CARINA project, a new dataset with many previously unpublished hydrographic data from the Atlantic, Arctic and Southern Ocean was assembled and subjected to careful quality control (QC) procedures. In this paper, we present the dissolved oxygen measurements in the Atlantic region of the database and describe in detail the secondary QC procedures that aim to ensure optimal consistency between different cruises in order to permit studies of long-term change. The secondary QC is based on a cross-over analysis, i.e. the comparison of deep ocean data at places that were sampled by different cruises at different times. Initial adjustments to the individual cruises were then determined by an inverse procedure that computes a set of adjustments that requires the minimum amount of adjustment and at the same time reduces the offsets in an optimal manner. The initial adjustments were then reviewed by the CARINA members, and only those that passed the following two criteria were adopted: (i) the region not subject to substantial temporal variability, and (ii) the adjustment must be based on at least three stations from each cruise. No adjustment was recommended for cruises that did not fit these criteria. The final CARINA-Oxygen database has 113005 oxygen samples from 9535 stations obtained during 98 cruises covering three decades. The sampling density of the oxygen data is particularly good in the North Atlantic north of about 40° N especially after 1987. In contrast, the sample density in the South Atlantic is much lower. Some cruises appear to have poor data quality, and were subsequently omitted from the adjusted data base. Of the data included in the adjusted data base, 20% were adjusted with a mean adjustment of 2%.


2011 ◽  
Vol 24 (22) ◽  
pp. 5812-5830 ◽  
Author(s):  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Bohua Huang ◽  
Yan Xue ◽  
Wanqiu Wang ◽  
...  

Abstract In this work, the authors analyze the air–sea interaction processes associated with the persistent atmospheric and oceanic anomalies in the North Atlantic Ocean during summer 2009–summer 2010 with a record-breaking positive sea surface temperature anomaly (SSTA) in the hurricane Main Development Region (MDR) in the spring and summer of 2010. Contributions to the anomalies from the El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and a long-term trend are identified. The warming in the tropical North Atlantic during summer 2009–summer 2010 represented a typical response to ENSO, preconditioned and amplified by the influence of a strong and persistent negative phase of the NAO. The long-term trends enhanced the warming in the high and low latitudes and weakened the cooling in the midlatitudes. The persistent negative phase of the NAO was associated with active thermodynamic air–sea interaction in the North Atlantic basin. Surface wind anomalies associated with the NAO altered the ocean surface heat flux and changed the SSTA, which was likely further enhanced by the positive wind speed–evaporation–SST feedback. The total heat flux was dominated by the latent and sensible heat fluxes, while the shortwave radiation contributed to the tropical SSTA to a lesser degree. Sensitivity experiments with an atmospheric general circulation model forced by observed SST in the Atlantic Ocean alone suggested that the Atlantic SSTA, which was partly forced by the NAO, had some positive contribution to the persistence of the negative phase of the NAO. Therefore, the persistent NAO condition is partly an outcome of the global climate anomalies and the ocean–atmosphere feedback within the Atlantic basin. The combination of the ENSO, NAO, and long-term trend resulted in the record-breaking positive SSTA in the MDR in the boreal spring and summer of 2010. On the basis of the statistical relationship, the SSTA pattern in the North Atlantic was reasonably well predicted by using the preceding ENSO and NAO as predictors.


2021 ◽  
Author(s):  
Jannes Koelling ◽  
Dariia Atamanchuk ◽  
Johannes Karstensen ◽  
Patricia Handmann ◽  
Douglas W. R. Wallace

Abstract. The Labrador Sea in the North Atlantic Ocean is one of the few regions globally where oxygen from the atmosphere can reach the deep ocean directly. This is the result of wintertime convection, which homogenizes the water column to a depth of up to 2000 m, and brings deep water undersaturated in oxygen into contact with the atmosphere. In this study, we analyze how the intense oxygen uptake during Labrador Sea Water (LSW) formation affects the properties of the outflowing deep western boundary current, which ultimately feeds the upper part of the North Atlantic Deep Water layer in much of the Atlantic Ocean. Seasonal cycles of oxygen concentration, temperature, and salinity from a two-year time series collected by sensors moored at 600 m nominal depth in the outflowing boundary current at 53° N show that LSW is primarily exported in the months following the onset of convection, from March to August. During the rest of the year, properties of the outflow resemble those of Irminger Water, which enters the basin with the boundary current from the Irminger Sea. The input of newly ventilated LSW increases the oxygen concentration from 298 μmol L−1 in January to a maximum of 306 μmol L−1 in April. As a result of this LSW input, 1.57 × 1012 mol year−1 of oxygen are added to the outflowing boundary current, mostly during summer, equivalent to 49 % of the wintertime uptake from the atmosphere in the interior of the basin. The export of oxygen from the subpolar gyre associated with this direct southward pathway of LSW is estimated to supply about 71 % of the oxygen consumed annually in the upper North Atlantic Deep Water layer in the Atlantic Ocean between the equator and 50° N. Our results show that the formation of LSW is important for replenishing oxygen to the deep oceans, meaning that possible changes in its formation rate and ventilation due to climate change could have wide-reaching impacts on marine life.


2020 ◽  
Vol 33 (5) ◽  
pp. 1677-1689 ◽  
Author(s):  
Harry L. Bryden ◽  
William E. Johns ◽  
Brian A. King ◽  
Gerard McCarthy ◽  
Elaine L. McDonagh ◽  
...  

AbstractNorthward ocean heat transport at 26°N in the Atlantic Ocean has been measured since 2004. The ocean heat transport is large—approximately 1.25 PW, and on interannual time scales it exhibits surprisingly large temporal variability. There has been a long-term reduction in ocean heat transport of 0.17 PW from 1.32 PW before 2009 to 1.15 PW after 2009 (2009–16) on an annual average basis associated with a 2.5-Sv (1 Sv ≡ 106 m3 s−1) drop in the Atlantic meridional overturning circulation (AMOC). The reduction in the AMOC has cooled and freshened the upper ocean north of 26°N over an area following the offshore edge of the Gulf Stream/North Atlantic Current from the Bahamas to Iceland. Cooling peaks south of Iceland where surface temperatures are as much as 2°C cooler in 2016 than they were in 2008. Heat uptake by the atmosphere appears to have been affected particularly along the path of the North Atlantic Current. For the reduction in ocean heat transport, changes in ocean heat content account for about one-quarter of the long-term reduction in ocean heat transport while reduced heat uptake by the atmosphere appears to account for the remainder of the change in ocean heat transport.


2015 ◽  
Vol 120 (7) ◽  
pp. 5120-5133 ◽  
Author(s):  
Wayne Crawford ◽  
Valerie Ballu ◽  
Xavier Bertin ◽  
Mikhail Karpytchev

The measurement of the temperature gradient and thermal conductivity in the sediments beneath the floor of the North Atlantic Ocean is described. Measurements were made at five stations. The mean heat flow and conductivity were found to be 0·98 × 10 -6 cal/cm 2 s and 25 × 10 -4 cal/cm °Cs. The heat flows at the individual stations range from 0·58 to 1·42 × 10 -6 cal/cm 2 s. The high heat flow is an unexpected result, and it is difficult to find a source for so much heat.


2014 ◽  
Vol 27 (1) ◽  
pp. 455-476 ◽  
Author(s):  
John A. Knaff ◽  
Scott P. Longmore ◽  
Debra A. Molenar

Abstract Storm-centered infrared (IR) imagery of tropical cyclones (TCs) is related to the 850-hPa mean tangential wind at a radius of 500 km (V500) calculated from 6-hourly global numerical analyses for North Atlantic and eastern North Pacific TCs for 1995–2011. V500 estimates are scaled using the climatological vortex decay rate beyond 500 km to estimate the radius of 5 kt (1 kt = 0.514 m s−1) winds (R5) or TC size. A much larger historical record of TC-centered IR imagery (1978–2011) is then used to estimate TC sizes and form a global TC size climatology. The basin-specific distributions of TC size reveal that, among other things, the eastern North Pacific TC basins have the smallest while western North Pacific have the largest TC size distributions. The life cycle of TC sizes with respect to maximum intensity shows that TC growth characteristics are different among the individual TC basins, with the North Atlantic composites showing continued growth after maximum intensity. Small TCs are generally located at lower latitudes, westward steering, and preferred in seasons when environmental low-level vorticity is suppressed. Large TCs are generally located at higher latitudes, poleward steering, and preferred in enhanced low-level vorticity environments. Postmaximum intensity growth of TCs occurs in regions associated with enhanced baroclinicity and TC recurvature, while those that do not grow much are associated with west movement, erratic storm tracks, and landfall at or near the time of maximum intensity. With respect to climate change, no significant long-term trends are found in the dataset of TC size.


Sign in / Sign up

Export Citation Format

Share Document