scholarly journals The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign

2020 ◽  
Vol 12 (3) ◽  
pp. 2183-2208 ◽  
Author(s):  
Kirk Knobelspiesse ◽  
Henrique M. J. Barbosa ◽  
Christine Bradley ◽  
Carol Bruegge ◽  
Brian Cairns ◽  
...  

Abstract. In the fall of 2017, an airborne field campaign was conducted from the NASA Armstrong Flight Research Center in Palmdale, California, to advance the remote sensing of aerosols and clouds with multi-angle polarimeters (MAP) and lidars. The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign was jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON). Six instruments were deployed on the ER-2 high-altitude aircraft. Four were MAPs: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary EXploration (SPEX airborne), and the Research Scanning Polarimeter (RSP). The remainder were lidars, including the Cloud Physics Lidar (CPL) and the High Spectral Resolution Lidar 2 (HSRL-2). The southern California base of ACEPOL enabled observation of a wide variety of scene types, including urban, desert, forest, coastal ocean, and agricultural areas, with clear, cloudy, polluted, and pristine atmospheric conditions. Flights were performed in coordination with satellite overpasses and ground-based observations, including the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI), sun photometers, and a surface reflectance spectrometer. ACEPOL is a resource for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. Data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion. They are freely available to the public. The DOI for the primary database is https://doi.org/10.5067/SUBORBITAL/ACEPOL2017/DATA001 (ACEPOL Science Team, 2017), while for AirMSPI it is https://doi.org/10.5067/AIRCRAFT/AIRMSPI/ACEPOL/RADIANCE/ELLIPSOID_V006 and https://doi.org/10.5067/AIRCRAFT/AIRMSPI/ACEPOL/RADIANCE/TERRAIN_V006 (ACEPOL AirMSPI 75 Science Team, 2017a, b). GroundMSPI data are at https://doi.org/10.5067/GROUND/GROUNDMSPI/ACEPOL/RADIANCE_v009 (GroundMSPI Science Team, 2017). Table 3 lists further details of these archives. This paper describes ACEPOL for potential data users and also provides an outline of requirements for future field missions with similar objectives.

2020 ◽  
Author(s):  
Kirk Knobelspiesse ◽  
Henrique M. J. Barbosa ◽  
Christine Bradley ◽  
Carol Bruegge ◽  
Brian Cairns ◽  
...  

Abstract. In the fall of 2017, an airborne field campaign was conducted from the NASA Armstrong Flight Research Center in Palmdale, California to advance the remote sensing of aerosols and clouds with Multi-angle Polarimeters (MAP) and Lidars. The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign was jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON). Six instruments were deployed on the ER-2 high altitude aircraft. Four were MAPs: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary EXploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The remainder were Lidars, including the Cloud Physics Lidar (CPL) and the High Spectral Resolution Lidar 2 (HSRL2). The southern California base of ACEPOL enabled observation of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. Flights were performed in coordination with satellite overpasses and ground based observations, including the Groundbased Multiangle SpectroPolarimetric Imager (GroundMSPI), sun photometers, and a surface reflectance spectrometer. ACEPOL is a resource for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. Data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion. They are freely available to the public, at https://doi.org/10.5067/SUBORBITAL/ACEPOL2017/DATA001 (ACEPOL Science Team, 2017). This paper describes ACEPOL for potential data users, and also provides an outline of requirements for future field missions with similar objectives.


2017 ◽  
Vol 25 (2) ◽  
pp. 979 ◽  
Author(s):  
Zhongtao Cheng ◽  
Dong Liu ◽  
Yupeng Zhang ◽  
Chong Liu ◽  
Jian Bai ◽  
...  

2021 ◽  
Author(s):  
James B. Duncan Jr. ◽  
Laura Bianco ◽  
Bianca Adler ◽  
Tyler Bell ◽  
Irina V. Djalalova ◽  
...  

Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, U.S.A., active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include Radar Wind Profilers, Microwave Radiometers, Atmospheric Emitted Radiance Interferometers, Ceilometers, High Spectral Resolution Lidars, Doppler Lidars, and Collaborative Lower Atmospheric Modelling Profiling Systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary-layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary-layer depth is also investigated. We found that while overall all instruments are able to provide reasonable boundary-layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, Radar Wind Profilers perform well during cloud free conditions, and Microwave Radiometers and Atmospheric Emitted Radiance Interferometers have a very good agreement during all conditions, but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from Ceilometers and High Spectral Resolution Lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the Collaborative Lower Atmospheric Modelling Profiling Systems can be constricted to a limited height range in low aerosol conditions.


2021 ◽  
Vol 13 (2) ◽  
pp. 292
Author(s):  
Megan Seeley ◽  
Gregory P. Asner

As humans continue to alter Earth systems, conservationists look to remote sensing to monitor, inventory, and understand ecosystems and ecosystem processes at large spatial scales. Multispectral remote sensing data are commonly integrated into conservation decision-making frameworks, yet imaging spectroscopy, or hyperspectral remote sensing, is underutilized in conservation. The high spectral resolution of imaging spectrometers captures the chemistry of Earth surfaces, whereas multispectral satellites indirectly represent such surfaces through band ratios. Here, we present case studies wherein imaging spectroscopy was used to inform and improve conservation decision-making and discuss potential future applications. These case studies include a broad array of conservation areas, including forest, dryland, and marine ecosystems, as well as urban applications and methane monitoring. Imaging spectroscopy technology is rapidly developing, especially with regard to satellite-based spectrometers. Improving on and expanding existing applications of imaging spectroscopy to conservation, developing imaging spectroscopy data products for use by other researchers and decision-makers, and pioneering novel uses of imaging spectroscopy will greatly expand the toolset for conservation decision-makers.


Data ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 63
Author(s):  
Dong Chen ◽  
Varada Shevade ◽  
Allison Baer ◽  
Jiaying He ◽  
Amanda Hoffman-Hall ◽  
...  

Malaria is a serious infectious disease that leads to massive casualties globally. Myanmar is a key battleground for the global fight against malaria because it is where the emergence of drug-resistant malaria parasites has been documented. Controlling the spread of malaria in Myanmar thus carries global significance, because the failure to do so would lead to devastating consequences in vast areas where malaria is prevalent in tropical/subtropical regions around the world. Thanks to its wide and consistent spatial coverage, remote sensing has become increasingly used in the public health domain. Specifically, remote sensing-based land cover/land use (LCLU) maps present a powerful tool that provides critical information on population distribution and on the potential human-vector interactions interfaces on a large spatial scale. Here, we present a 30-meter LCLU map that was created specifically for the malaria control and eradication efforts in Myanmar. This bottom-up approach can be modified and customized to other vector-borne infectious diseases in Myanmar or other Southeastern Asian countries.


Author(s):  
Ireneusz Cymes ◽  
Iwona Cymes ◽  
Ewa Dragańska ◽  
Sławomir Szymczyk

The influence of weather conditions on mid-field ponds situated in a reclaimed area in Sępopolska PlainThe investigations were conducted in northeastern Poland near Lidzbark Warmiński (54° 08" N, 20° 36" E). Five mid-field ponds situated on grasslands were chosen: four of them were dredged and deepened, and one of them remained as a natural reservoir. The aim of this paper was to assess the influence of weather conditions on the quantity and quality of water in mid-field ponds situated in agricultural areas. It was found that the quantity of water in mid-field ponds was related much more to the air temperature, which was responsible for either water evaporation or snow melting, rather than to the amount of precipitation. The reduction in the volume of water stored in the ponds during very dry years had a negative influence on its quality. During the observation period, the dredged ponds were characterized by permanent water tables, whereas the natural reservoir dried out in very dry years. Atmospheric conditions influenced the concentrations of ammonium nitrogen and calcium and chlorine ions in the studied water bodies. The volume of water retained in mid-field ponds influenced the concentrations of phosphorus and sulphates. Increased precipitation sums caused lower water pH; however in warmer periods, at increased pH and COD


Sign in / Sign up

Export Citation Format

Share Document