scholarly journals Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC<sup>4</sup>A

2021 ◽  
Vol 13 (4) ◽  
pp. 1499-1517
Author(s):  
Pierre Bosser ◽  
Olivier Bock ◽  
Cyrille Flamant ◽  
Sandrine Bony ◽  
Sabrina Speich

Abstract. In the framework of the EUREC4A (Elucidating the role of clouds–circulation coupling in climate) campaign that took place in January and February 2020, integrated water vapour (IWV) contents were retrieved over the open tropical Atlantic Ocean using Global Navigation Satellite System (GNSS) data acquired from three research vessels (R/Vs): R/V Atalante, R/V Maria S. Merian and R/V Meteor. This paper describes the GNSS processing method and compares the GNSS IWV retrievals with IWV estimates from the European Centre for Medium-range Weather Forecasts (ECMWF) fifth reanalysis (ERA5), from the Moderate Resolution Imaging Spectroradiometer (MODIS) infrared products and from terrestrial GNSS stations located along the tracks of the ships. The ship-borne GNSS IWV retrievals from R/V Atalante and R/V Meteor compare well with ERA5, with small biases (−1.62 kg m−2 for R/V Atalante and +0.65 kg m−2 for R/V Meteor) and a root mean square (rms) difference of about 2.3 kg m−2. The results for the R/V Maria S. Merian are found to be of poorer quality, with an rms difference of 6 kg m−2, which is very likely due to the location of the GNSS antenna on this R/V prone to multipath effects. The comparisons with ground-based GNSS data confirm these results. The comparisons of all three R/V IWV retrievals with MODIS infrared products show large rms differences of 5–7 kg m−2, reflecting the enhanced uncertainties in these satellite products in the tropics. These ship-borne IWV retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign, east of Barbados, Guyana and northern Brazil. Both the raw GNSS measurements and the IWV estimates are available through the AERIS data centre (https://en.aeris-data.fr/, last access: 20 September 2020). The digital object identifiers (DOIs) for R/V Atalante IWV and raw datasets are https://doi.org/10.25326/71 (Bosser et al., 2020a) and https://doi.org/10.25326/74 (Bosser et al., 2020d), respectively. The DOIs for the R/V Maria S. Merian IWV and raw datasets are https://doi.org/10.25326/72 (Bosser et al., 2020b) and https://doi.org/10.25326/75 (Bosser et al., 2020e), respectively. The DOIs for the R/V Meteor IWV and raw datasets are https://doi.org/10.25326/73 (Bosser et al., 2020c) and https://doi.org/10.25326/76 (Bosser et al., 2020f), respectively.

2021 ◽  
Author(s):  
Pierre Bosser ◽  
Olivier Bock ◽  
Cyril Flamant ◽  
Sandrine Bony ◽  
Sabrian Speich

&lt;p&gt;In the framework of the EUREC4A campaign, integrated water vapour (IWV) contents were retrieved over the open Tropical Atlantic Ocean using Global Navigation Satellite System (GNSS) data acquired from three research vessels : R/V Atalante, R/V Maria S. Merian, and R/V Meteor. This study describes the GNSS processing method and compares the GNSS IWV retrievals with IWV estimates from the ECMWF fifth ReAnalysis (ERA5), from the MODIS infra-red products, and from terrestrial GNSS stations located along the tracks of the ships. The ship-borne GNSS IWVs retrievals from R/V Atalante and R/V Meteor compare well with ERA5, with small biases (-1.62 kg/m2 for R/V Atalante and +0.65 kg/m2 for R/V Meteor) and a RMS difference about ~2.3 kg/m2. The results for the R/V Maria S. Merian are found &amp;#160;to be of poorer quality, with RMS difference of about 6 kg/m2 which are very likely due to the location of the GNSS antenna on this R/V prone to multipath effects. The comparisons with ground-based GNSS data confirm these results. The comparisons of all three R/V IWV retrievals with MODIS infra-red product show large RMS differences of 5-7 kg/m2, reflecting the enhanced uncertainties of this satellite product in the tropics. These ship-borne IWV retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign, east of Barbados, Guyana and northern Brazil.&lt;/p&gt;


2020 ◽  
Author(s):  
Leonie Bernet ◽  
Elmar Brockmann ◽  
Thomas von Clarmann ◽  
Niklaus Kämpfer ◽  
Emmanuel Mahieu ◽  
...  

&lt;div&gt; &lt;div&gt;Water vapour in the atmosphere is not only a strong greenhouse gas, but also affects many atmospheric processes such as the formation of clouds and precipitation. With increasing temperature, Integrated Water Vapour (IWV) is expected to increase. Analysing how atmospheric water vapour changes in time is therefore important to monitor ongoing climate change. To determine whether IWV increases in Switzerland as expected, we asses IWV trends from a tropospheric water radiometer (TROWARA) in Bern, from a Fourier transform infrared (FTIR) spectrometer at Jungfraujoch and from the Swiss network of ground-based Global Navigation Satellite System (GNSS) stations. In addition, trends are assessed from reanalysis data, using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) and the Modern-Era Retrospecitve Analysis for Research and Applications (MERRA-2).&lt;/div&gt; &lt;div&gt;Ground-based GNSS data are well suited for IWV trends due to their high temporal resolution and the spatially dense networks. However, they are highly sensitvie to instrumental changes and care has to be taken when determining GNSS based trends. We therefore use a straightforward trend method to account for jumps in the GNSS data when instrumental changes were performed.&lt;/div&gt; &lt;div&gt;Our data show mostly positive IWV trends between 2 and 5% per decade in Switzerland. GNSS trends are significant for some stations and the significance has the tendency to increase with altitude. Further, we found that IWV scales on average to lower tropospheric temperatures as expected, except in winter. However, the correlation between IWV and temperature based on reanalysis data is spatially incoherent. Besides our positive IWV trends, we found a good agreement of radiometer, GNSS and reanalysis data in Bern. Further, we found a dry bias of the FTIR compared to GNSS data at Jungfraujoch, due to the restriction of FTIR to clear-sky conditions. Our results are generally consistent with the positive water vapour feedback in a warming climate. We show that ground-based GNSS networks provide a valuable source for regional climate monitoring with high spatial and temporal resolution, but homogeneously reprocessed data and advanced trend techniques are needed to account for data jumps.&lt;/div&gt; &lt;/div&gt;


2020 ◽  
Author(s):  
Pierre Bosser ◽  
Olivier Bock ◽  
Cyrille Flamant ◽  
Sandrine Bony ◽  
Sabrina Speich

Abstract. In the framework of the EUREC4A (Elucidating the role of clouds-circulation coupling in climate) campaign that took place in January and February 2020, integrated water vapour (IWV) contents were retrieved over the open Tropical Atlantic Ocean using Global Navigation Satellite Systems (GNSS) data acquired from three research vessels (R/Vs): R/V Atalante, R/V Maria S. Merian, and R/V Meteor. This paper describes the GNSS processing method and compares the GNSS IWV retrievals with IWV estimates from the European Center for Medium-range Weather Forecast (ECMWF) fifth ReAnalysis (ERA5), from the Moderate-Resolution Imaging Spectroradiometer (MODIS) infra-red products, and from terrestrial GNSS stations located along the tracks of the ships. The ship-borne GNSS IWVs retrievals from R/V Atalante and R/V Meteor compare well with ERA5, with small biases (−1.62 kg m−2 for R/V Atalante and +0.65 kg m−2 for R/V Meteor) and a root mean square (RMS) difference about 2.3 kg m−2. The results for the R/V Maria S. Merian are found to be of poorer quality, with RMS difference of 6 kg m−2 which are very likely due to the location of the GNSS antenna on this R/V prone to multipath effects. The comparisons with ground-based GNSS data confirm these results. The comparisons of all three R/V IWV retrievals with MODIS infra-red product show large RMS differences of 5–7 kg m−2, reflecting the enhanced uncertainties of this satellite product in the tropics. These ship-borne IWV retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign, east of Barbados, Guyana and northern Brazil. Both the raw GNSS measurements and the IWV estimates are available through the AERIS data center (https://en.aeris-data.fr/). The digital object identifiers (DOIs) for R/V Atalante IWV and raw datasets are https://doi.org/10.25326/71 (Bosser et al., 2020a) and https://doi.org/10.25326/74 (Bosser et al., 2020d), respectively. The DOIs for the R/V Maria S. Merian IWV and raw datasets are https://doi.org/10.25326/72 (Bosser et al., 2020b) and https://doi.org/10.25326/75 (Bosser et al., 2020e), respectively. The DOIs for the R/V Meteor IWV and raw datasets are https://doi.org/10.25326/73 (Bosser et al., 2020c) and https://doi.org/10.25326/76 (Bosser et al., 2020f), respectively.


2020 ◽  
Author(s):  
Leonie Bernet ◽  
Elmar Brockmann ◽  
Thomas von Clarmann ◽  
Niklaus Kämpfer ◽  
Emmanuel Mahieu ◽  
...  

Abstract. Vertically integrated water vapour (IWV) is expected to increase globally in a warming climate. To determine whether IWV increases as expected on a regional scale, we present IWV trends in Switzerland from ground-based remote sensing techniques and reanalysis models, considering data for the time period 1995 to 2018. We estimate IWV trends from a ground-based microwave radiometer in Bern, from a Fourier Transform Infrared (FTIR) spectrometer at Jungfraujoch, from reanalysis data (ERA5 and MERRA-2) and from Swiss ground-based Global Navigation Satellite System (GNSS) stations. Using a straightforward trend method, we account for jumps in the GNSS data, which are highly sensitive to instrumental changes. We found that IWV generally increased by 2 to 5 % per decade, with deviating trends at some GNSS stations. Trends were significantly positive at 23 % of all GNSS stations, which often lie at higher altitudes (between 850 and 1700 m above sea level). Our results further show that IWV in Bern scales to air temperature as expected (except in winter), but the IWV–temperature relation based on reanalysis data in whole Switzerland is not everywhere clear. In addition to our positive IWV trends, we found that the radiometer in Bern agrees within 5 % with GNSS and reanalyses. At the high altitude station Jungfraujoch, we found a mean difference of 0.26 mm (15 %) between the FTIR and coincident GNSS data, improving to 4 % after an antenna update in 2016. In general, we showed that ground-based GNSS data are highly valuable for climate monitoring, given that the data have been homogeneously reprocessed and that instrumental changes are accounted for. We found a response of IWV to rising temperature in Switzerland, which is relevant for projected changes in local cloud and precipitation processes.


2020 ◽  
Vol 20 (19) ◽  
pp. 11223-11244 ◽  
Author(s):  
Leonie Bernet ◽  
Elmar Brockmann ◽  
Thomas von Clarmann ◽  
Niklaus Kämpfer ◽  
Emmanuel Mahieu ◽  
...  

Abstract. Vertically integrated water vapour (IWV) is expected to increase globally in a warming climate. To determine whether IWV increases as expected on a regional scale, we present IWV trends in Switzerland from ground-based remote sensing techniques and reanalysis models, considering data for the time period 1995 to 2018. We estimate IWV trends from a ground-based microwave radiometer in Bern, from a Fourier transform infrared (FTIR) spectrometer at Jungfraujoch, from reanalysis data (ERA5 and MERRA-2) and from Swiss ground-based Global Navigation Satellite System (GNSS) stations. Using a straightforward trend method, we account for jumps in the GNSS data, which are highly sensitive to instrumental changes. We found that IWV generally increased by 2 % per decade to 5 % per decade, with deviating trends at some GNSS stations. Trends were significantly positive at 17 % of all GNSS stations, which often lie at higher altitudes (between 850 and 1650 m above sea level). Our results further show that IWV in Bern scales to air temperature as expected (except in winter), but the IWV–temperature relation based on reanalysis data in the whole of Switzerland is not clear everywhere. In addition to our positive IWV trends, we found that the radiometer in Bern agrees within 5 % with GNSS and reanalyses. At the Jungfraujoch high-altitude station, we found a mean difference of 0.26 mm (15 %) between the FTIR and coincident GNSS data, improving to 4 % after an antenna update in 2016. In general, we showed that ground-based GNSS data are highly valuable for climate monitoring, given that the data have been homogeneously reprocessed and that instrumental changes are accounted for. We found a response of IWV to rising temperature in Switzerland, which is relevant for projected changes in local cloud and precipitation processes.


2019 ◽  
Vol 37 (1) ◽  
pp. 89-100
Author(s):  
Yibin Yao ◽  
Linyang Xin ◽  
Qingzhi Zhao

Abstract. As an innovative use of Global Navigation Satellite System (GNSS), the GNSS water vapor tomography technique shows great potential in monitoring three-dimensional water vapor variation. Most of the previous studies employ the pixel-based method, i.e., dividing the troposphere space into finite voxels and considering water vapor in each voxel as constant. However, this method cannot reflect the variations in voxels and breaks the continuity of the troposphere. Moreover, in the pixel-based method, each voxel needs a parameter to represent the water vapor density, which means that huge numbers of parameters are needed to represent the water vapor field when the interested area is large and/or the expected resolution is high. In order to overcome the abovementioned problems, in this study, we propose an improved pixel-based water vapor tomography model, which uses layered optimal polynomial functions obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) by adaptive training for water vapor retrieval. Tomography experiments were carried out using the GNSS data collected from the Hong Kong Satellite Positioning Reference Station Network (SatRef) from 25 March to 25 April 2014 under different scenarios. The tomographic results are compared to the ECMWF data and validated by the radiosonde. Results show that the new model outperforms the traditional one by reducing the root-mean-square error (RMSE), and this improvement is more pronounced, at 5.88 % in voxels without the penetration of GNSS rays. The improved model also has advantages in more convenient expression.


2022 ◽  
Vol 15 (1) ◽  
pp. 21-39
Author(s):  
Karina Wilgan ◽  
Galina Dick ◽  
Florian Zus ◽  
Jens Wickert

Abstract. The assimilation of global navigation satellite system (GNSS) data has been proven to have a positive impact on weather forecasts. However, the impact is limited due to the fact that solely the zenith total delays (ZTDs) or integrated water vapor (IWV) derived from the GPS satellite constellation are utilized. Assimilation of more advanced products, such as slant total delays (STDs), from several satellite systems may lead to improved forecasts. This study shows a preparation step for the assimilation, i.e., the analysis of the multi-GNSS tropospheric advanced parameters: ZTDs, tropospheric gradients and STDs. Three solutions are taken into consideration: GPS-only, GPS–GLONASS (GR) and GPS–GLONASS–Galileo (GRE). The GNSS estimates are calculated using the operational EPOS.P8 software developed at GFZ. The ZTDs retrieved with this software are currently being operationally assimilated by weather services, while the STDs and tropospheric gradients are being tested for this purpose. The obtained parameters are compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis. The results show that all three GNSS solutions show similar level of agreement with the ERA5 model. For ZTDs, the agreement with ERA5 results in biases of approx. 2 mm and standard deviations (SDs) of 8.5 mm. The statistics are slightly better for the GRE solution compared to the other solutions. For tropospheric gradients, the biases are negligible, and SDs are equal to approx. 0.4 mm. The statistics are almost identical for all three GNSS solutions. For STDs, the agreement from all three solutions is very similar; however it is slightly better for GPS only. The average bias with respect to ERA5 equals approx. 4 mm, with SDs of approx. 26 mm. The biases are only slightly reduced for the Galileo-only estimates from the GRE solution. This study shows that all systems provide data of comparable quality. However, the advantage of combining several GNSS systems in the operational data assimilation is the geometry improvement by adding more observations, especially for low elevation and azimuth angles.


2017 ◽  
Author(s):  
Yana A. Virolainen ◽  
Yury M. Timofeyev ◽  
Vladimir S. Kostsov ◽  
Dmitry V. Ionov ◽  
Vladislav V. Kalinnikov ◽  
...  

Abstract. The cross-comparison of different techniques for atmospheric integrated water vapour (IWV) measurements is the essential part of their quality assessment protocol. We inter-compare the synchronised data sets of IWV values measured by Fourier-transform infrared spectrometer Bruker 125 HR (FTIR), microwave radiometer RPG-HATPRO (MW) and global navigation satellite system receiver Novatel ProPak-V3 (GPS) at St. Petersburg site between August 2014 and October 2016. Generally, all three techniques agree well with each other and therefore are suitable for monitoring IWV values at St. Petersburg site. We show that GPS and MW data quality depends on the atmospheric conditions; in dry atmosphere (IWV smaller than 6 mm), these techniques are less reliable at St. Petersburg site than the FTIR method. We evaluate the upper bound of statistical measurement errors for clear-sky conditions as 0.33 ± 0.03 mm (2.0 ± 0.3 %), 0.54 ± 0.03 mm (4.5 ± 0.3 %), and 0.76 ± 0.04 mm (6.3 ± 0.7 %) for FTIR, GPS and MW methods, respectively. We conclude that accurate spatial and temporal matching of different IWV measurements is necessary for achieving the better agreement between various methods for IWV monitoring.


2020 ◽  
Vol 12 (2) ◽  
pp. 300
Author(s):  
Alessandro Parizzi ◽  
Fernando Rodriguez Gonzalez ◽  
Ramon Brcic

This paper deals with the integration of deformation rates derived from Synthetic Aperture Radar Interferometry (InSAR) and Global Navigation Satellite System (GNSS) data. The proposed approach relies on knowledge of the variance/covariance of both InSAR and GNSS measurements so that they may be combined accounting for the spectral properties of their errors, hence preserving all spatial frequencies of the deformation detected by the two techniques. The variance/covariance description of the output product is also provided. A performance analysis is carried out on realistic simulated scenarios in order to show the boundaries of the technique. The proposed approach is finally applied to real data. Five Sentinel-1A/B stacks acquired over two different areas of interest are processed and discussed. The first example is a merged deformation map of the northern part of the Netherlands for both ascending and descending geometries. The second example shows the deformation at the junction between the North and East Anatolian Fault using three consecutive descending stacks.


MAUSAM ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 571-576
Author(s):  
ZHANG JINYE ◽  
CHENG CHUNFU ◽  
ZHU JINRONG ◽  
YU XIULI

Column-integrated water vapour also called Precipitable Water Vapour (PWV), is one of the main parameters influencing the global climate change. Due to its high spatial and temporal variability PWV has been found to be a good tracer of atmospheric motions. Retrieving PWV from Moderate Resolution Imaging Spectroradiometer (MODIS) data has the merits of high spatial resolution and low cost. In this paper, an algorithm for retrieving PWV using several MODIS near-IR channels data is first presented. Six typical cities in China with different climate are selected for study. These are Beijing, Shanghai, Guangzhou, Chengdu, Wuhan and Lanzhou. The variations of PWV in recent13 years (2001-2013) over six cities have been analyzed. The study brings out an increasing trend of annual average of water vapour over these cities in recent 13 years. The results also indicate that PWV reaches the highest value in summer, decreases in autumn, further decrease in spring, and is lowest in winter. PWV in summer over the six cities have been increasing in recent 13 years, but PWV in autumn and winter have been decreasing over inland cities, such as Wuhan and Beijing. Possible reasons for such observed trends are given in this paper.  


Sign in / Sign up

Export Citation Format

Share Document