scholarly journals Remote and autonomous measurements of precipitation for the northwestern Ross Ice Shelf, Antarctica

2021 ◽  
Vol 13 (12) ◽  
pp. 5803-5817
Author(s):  
Mark W. Seefeldt ◽  
Taydra M. Low ◽  
Scott D. Landolt ◽  
Thomas H. Nylen

Abstract. The Antarctic Precipitation System project deployed and maintained four sites across the northwestern Ross Ice Shelf in Antarctica from November 2017 to November 2019. The goals for the project included the collection of in situ observations of precipitation in Antarctica spanning a duration of 2 years, an improvement in the understanding of precipitation events across the Ross Ice Shelf, and the ability to validate precipitation data from atmospheric numerical models. At each of the four sites the precipitation was measured with an OTT Pluvio2 precipitation gauge. Additionally, snow accumulation at the site was measured with a sonic ranging sensor and using GPS interferometric reflectivity. Supplemental observations of temperature, wind speed, particle count, particle size and speed, and images and video from a camera were collected to provide context to the precipitation measurements. The collected dataset represents some of the first year-round observations of precipitation in Antarctica at remote locations using an autonomous measurement system. The acquired observations have been quality-controlled and post-processed, and they are available for retrieval through the United States Antarctic Program Data Center (https://doi.org/10.15784/601441, Seefeldt, 2021).

2021 ◽  
Author(s):  
Mark W. Seefeldt ◽  
Taydra M. Low ◽  
Scott D. Landolt ◽  
Thomas H. Nylen

Abstract. The Antarctic Precipitation System project deployed and maintained four sites across the northwest Ross Ice Shelf in Antarctica from November 2017 to November 2019. The goals for the project included the collection of in situ observations of precipitation in Antarctica spanning a duration of two years, an improvement in the understanding of precipitation events across the Ross Ice Shelf, and the ability to validate precipitation data from atmospheric numerical models. At each of the four sites the precipitation was measured with an OTT Pluvio2 precipitation gauge. Additionally, snow accumulation at the site was measured with a sonic ranging sensor and using GPS-Interferometry Reflectivity. Supplemental observations of temperature, wind speed, particle count, particle size and speed, and images and video from a camera, were collected to provide context to the precipitation measurements. The collected dataset represents some of the first year-round observations of precipitation in Antarctic at remote locations using an autonomous measurement system. The acquired observations have been quality controlled, post-processed, and are available for retrieval through the United States Antarctic Program Data Center (Seefeldt, 2021; doi.org/10.15784/601441). 


2021 ◽  
Author(s):  
Yuzhen Yan ◽  
Nicole E. Spaulding ◽  
Michael L. Bender ◽  
Edward J. Brook ◽  
John A. Higgins ◽  
...  

Abstract. The S27 ice core, drilled in the Allan Hills Blue Ice Area of East Antarctica, is located in Southern Victoria Land ~80 km away from the present-day northern edge of the Ross Ice Shelf. Here, we utilize the reconstructed accumulation rate of S27 covering the Last Interglacial (LIG) period between 129 and 116 thousand years before present (ka) to infer moisture transport into the region. The accumulation rate is based on the ice age-gas age differences calculated from the ice chronology, which is constrained by the stable water isotopes of the ice, and an improved gas chronology based on measurements of oxygen isotopes of O2 in the trapped gases. The peak accumulation rate in S27 occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the most conservative estimate yields a six-fold increase in the accumulation rate in the LIG, whereas other Antarctic ice cores are typically characterized by a glacial-interglacial difference of a factor of two to three. While part of the increase in S27 accumulation rates must originate from changes in the large-scale atmospheric circulation, additional mechanisms are needed to explain the large changes. We hypothesize that the exceptionally high snow accumulation recorded in S27 reflects open-ocean conditions in the Ross Sea, created by reduced sea ice extent and increased polynya size, and perhaps by a southward retreat of the Ross Ice Shelf relative to its present-day position near the onset of LIG. The proposed ice shelf retreat would also be compatible with a sea-level high stand around 129 ka significantly sourced from West Antarctica. The peak in S27 accumulation rates is transient, suggesting that if the Ross Ice Shelf had indeed retreated during the early LIG, it would have re-advanced by 125 ka.


1978 ◽  
Vol 20 (84) ◽  
pp. 509-518 ◽  
Author(s):  
Robert H. Thomas ◽  
Charles R. Bentley

AbstractMeasurements of ice thickness, velocity, snow accumulation rates, and surface strain-rates are used to examine the state of equilibrium of three flow bands of the Ross Ice Shelf. The analysis gives the rate of thickening of the ice shelf in terms of the basal freezing rate, which is unknown. However, indirect evidence suggests that the basal flux ranges from a small value of freezing in the south to a melting rate of about one meter of ice per year at the ice front. If these values are correct then the flow band in the south-east corner of the ice shelf appears to be thickening at an average value of (34 ± 15) cm of ice per year. Persistent thickening at this rate must lead to grounding of large areas of the ice shelf. This would restrict drainage from West Antarctic ice streams which feed this part of the ice shelf and these would tend to thicken and advance their grounding lines into the ice shelf. Further north, near the RISP bore-hole site, the ice shelf is probably in equilibrium. The largest flow band is to the south and east of Roosevelt Island, and this also may be in equilibrium if there is significant bottom melting from ice shelf that is more than 100 km from the ice front.


1978 ◽  
Vol 20 (84) ◽  
pp. 509-518 ◽  
Author(s):  
Robert H. Thomas ◽  
Charles R. Bentley

AbstractMeasurements of ice thickness, velocity, snow accumulation rates, and surface strain-rates are used to examine the state of equilibrium of three flow bands of the Ross Ice Shelf. The analysis gives the rate of thickening of the ice shelf in terms of the basal freezing rate, which is unknown. However, indirect evidence suggests that the basal flux ranges from a small value of freezing in the south to a melting rate of about one meter of ice per year at the ice front. If these values are correct then the flow band in the south-east corner of the ice shelf appears to be thickening at an average value of (34 ± 15) cm of ice per year. Persistent thickening at this rate must lead to grounding of large areas of the ice shelf. This would restrict drainage from West Antarctic ice streams which feed this part of the ice shelf and these would tend to thicken and advance their grounding lines into the ice shelf. Further north, near the RISP bore-hole site, the ice shelf is probably in equilibrium. The largest flow band is to the south and east of Roosevelt Island, and this also may be in equilibrium if there is significant bottom melting from ice shelf that is more than 100 km from the ice front.


2017 ◽  
Vol 34 (5) ◽  
pp. 587-598
Author(s):  
Yihui Liu ◽  
Yetang Wang ◽  
Minghu Ding ◽  
Weijun Sun ◽  
Tong Zhang ◽  
...  

1981 ◽  
Vol 27 (96) ◽  
pp. 347-357
Author(s):  
J. A Warburton ◽  
L. G. Young

AbstractSnow and firn samples from 2 and 5 m deep pits were analyzed for seven sites on the Ross Ice Shelf, Antarctica. Na, Mg, Ca, and K concentrations change with depth, the range of concentrations being approximately 10 : 1 for all four elements. The changes in concentrations for the four elements at any one site are highly correlated, suggesting that the impurities are introduced into the snow-pack simultaneously by the same mechanisms.Pronounced periodic structure of the vertical chemical profiles leads to strong correlations (γ> 0.9) of the chemical features from site to site separated by distances up to 440 km.Assuming that the observed chemical features are periodic as a function of depth due to temporal variations caused by large-scale phenomena, then the wavelength (in depth) of these features should be proportional to the accumulation. Under the assumptions, the linear regression ratio of one site to another will give the relative accumulations at these sites. The ratios of snow accumulation estimated by these chemical methods agree, within a few per cent, with the ratios for the same sites estimated by total β-activity or stratigraphic methods.It is suggested that the chemical variations with depth are caused by meteorological events which may have seasonal changes in frequency and intensity. It is also suggested that the most-favored season for the production of chemical-concentration maxima is autumn because of the documented higher frequency of precipitating storms on the Ross Ice Shelf and the minimum in sea-ice extent at that time of year.


1988 ◽  
Vol 11 ◽  
pp. 165-172 ◽  
Author(s):  
R. H. Thomas ◽  
S. N. Stephenson ◽  
R. A. Bindschadler ◽  
S. Shabtaie ◽  
C. R. Bentley

Detailed measurements of surface topography, ice motion, snow accumulation, and ice thickness were made in January 1974 and again in December 1984, along an 8 km stake network extending from the ice sheet, across the grounding line, and on to floating ice shelf in the mouth of slow-moving Ice Stream C, which flows into the eastern side of Ross Ice Shelf, Antarctica. During the 11 years between surveys, the grounding line retreated by approximately 300 m. This was caused by net thinning of the ice shelf, which we believe to be a response to the comparatively recent, major decrease in ice discharge from Ice Stream C. Farther inland, snow accumulation is not balanced by ice discharge, and the ice stream is growing progressively thicker.There is evidence that the adjacent Ice Stream B has slowed significantly over the last decade, and this may be an early indication that this fast-moving ice stream is about to enter a period of stagnation similar to that of Ice Stream C. Indeed, these large ice streams flowing from West Antarctica into Ross Ice Shelf may oscillate between periods of relative stagnation and major activity. During active periods, large areas of ice shelf thicken and run aground on seabed to form extensive “ice plains” in the mouth of the ice stream. Ultimately, these become too large to be pushed seaward by the ice stream, which then slows down and enters a period of stagnation. During this period, the grounding line of the ice plain retreats, as we observe today in the mouth of Ice Stream C, because nearby ice shelf, no longer compressed by ice-stream motion, progressively thins. At the same time, water within the deformable till beneath the ice starts to freeze on to the base of the ice stream, and snow accumulation progressively increases the ice thickness. A new phase of activity would be initiated when the increasing gravity potential of the ice stream exceeds the total resistance of the shrinking ice plain and the thinning layer of deformable till at the bed. This could occur rapidly if the effects of the shrinking ice plain outweigh those of the thinning (and therefore stiffening) till. Otherwise, the till layer would finally become completely frozen, and the ice stream would have to thicken sufficiently to initiate significant heating by internal deformation, followed by basal melting and finally saturation of an adequate thickness of till; this could take some thousands of years.


2013 ◽  
Vol 7 (5) ◽  
pp. 1399-1410 ◽  
Author(s):  
L. Cohen ◽  
S. Dean

Abstract. Snow accumulation measurements from automatic weather stations (AWS) around the Ross Ice Shelf (RIS), Antarctica, are used to provide a new set of ground-based observations which are compared to precipitation from the ECMWF ERA-Interim and NCEP/NCAR Reanalysis-2 datasets. The high temporal resolution of the AWS snow accumulation measurements allow for an event-based comparison of reanalyses precipitation to the in situ observations. Snow accumulation records from nine AWS provide multiple years of accumulation data between 2008 and 2012 over a relatively large, homogeneous region of Antarctica, and also provide the basis for a statistical evaluation of accumulation and precipitation events. The complex effects of wind on snow accumulation (which can both limit and enhance accumulation) complicate the use of the accumulation measurements, but this analysis shows that they can provide a valuable source of ground-based observations for comparisons to modelled precipitation on synoptic timescales. The analysis shows that ERA-Interim reproduces more precipitation events than NCEP-2, and these events correspond to an average 8.2% more precipitation. Significant correlations between reanalyses and AWS event sizes are seen at several stations and show that ERA-Interim consistently produces larger precipitation events than NCEP-2.


Polar Record ◽  
1976 ◽  
Vol 18 (112) ◽  
pp. 37-41 ◽  
Author(s):  
C. S. M. Doake

An ice shelf is a floating ice sheet, attached to land where ice is grounded along the coastline. Nourished both by surface snow accumulation and by glaciers and ice sheets flowing off the land, ice shelves can reach a considerable thickness, varying from up to 1 300 m when the ice starts to float to 200 m or less at the seaward edge (known as the ice front). Nearly all the world's ice shelves are found in Antarctica, where they cover an area of about one and a half million square kilometres. The two largest are the Ross Ice Shelf and the Filchner-Ronne ice shelf, each with an area of about half a million square kilometres. Smaller ice shelves fringe other parts of the Antarctic coastline.


1963 ◽  
Vol 4 (34) ◽  
pp. 399-414 ◽  
Author(s):  
A. W. Stuart ◽  
C. Bull

AbstractOn the Ross Ice Shelf near Scott Base the annual surface snow accumulation is about 18 g.cm.−2. The increase of firn density with depth is greater than normal, due to horizontal compaction. Where the bottom of the ice shelf has a density less than 0.8 g.cm.−3the shelf becomes brine-soaked by vertical infiltration. The bottom of the shelf is melting, at about 44 g.cm.−2yr.−1where the bottom is impermeable ice and 73 g.cm.−2yr.−1where the bottom is permeable firn. Surface velocities at 40 points within 30 km. of Scott Base vary between 4 and 840 m.yr.−1. From the pattern of velocities, ice thicknesses and surface features, a transition zone is delineated, separating the Ross Ice Shelf from the “McMurdo Ice Shelf”.


Sign in / Sign up

Export Citation Format

Share Document