scholarly journals floodX: Urban flash flood experiments monitored with conventional and alternative sensors

2017 ◽  
Author(s):  
Matthew Moy de Vitry ◽  
Simon Dicht ◽  
João P. Leitão

Abstract. The datasets described in this paper are intended to provide a basis on which new methods for monitoring and modelling urban pluvial flash floods can be developed. Pluvial flash floods are a growing hazard to property and inhabitants' well-being in urban areas. However, the lack of appropriate data collection methods is often cited as an impediment for reliable flood modelling, thereby hindering the improvement of flood risk mapping and early warning systems. In the floodX project, 37 controlled urban flash floods were generated and monitored in a flood response training facility with state-of-the-art conventional sensors in the drainage network, as well as alternative sensors on the surface, namely temperature probes and surveillance cameras. With these data, the technical feasibility of utilizing citizen science and computer vision for urban flood monitoring can be explored. The floodX project stands out as the largest documented flood experiment of its kind, providing both conventional and alternative data types in parallel and at high temporal resolution. Besides describing the flash flood experiments and the resulting datasets, weaknesses in the data and lessons learned are also described. The main data package is openly available at http://doi.org/10.5281/zenodo.236878.

2017 ◽  
Vol 9 (2) ◽  
pp. 657-666 ◽  
Author(s):  
Matthew Moy de Vitry ◽  
Simon Dicht ◽  
João P. Leitão

Abstract. The data sets described in this paper provide a basis for developing and testing new methods for monitoring and modelling urban pluvial flash floods. Pluvial flash floods are a growing hazard to property and inhabitants' well-being in urban areas. However, the lack of appropriate data collection methods is often cited as an impediment for reliable flood modelling, thereby hindering the improvement of flood risk mapping and early warning systems. The potential of surveillance infrastructure and social media is starting to draw attention for this purpose. In the floodX project, 22 controlled urban flash floods were generated in a flood response training facility and monitored with state-of-the-art sensors as well as standard surveillance cameras. With these data, it is possible to explore the use of video data and computer vision for urban flood monitoring and modelling. The floodX project stands out as the largest documented flood experiment of its kind, providing both conventional measurements and video data in parallel and at high temporal resolution. The data set used in this paper is available at https://doi.org/10.5281/zenodo.830513.


Hydrology ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 27 ◽  
Author(s):  
Mahmood Al-mamari ◽  
Sameh Kantoush ◽  
Sohei Kobayashi ◽  
Tetsuya Sumi ◽  
Mohamed Saber

Flash floods in wadi systems discharge large volumes of water to either the sea or the desert areas after high-intensity rainfall events. Recently, wadi flash floods have frequently occurred in arid regions and caused damage to roads, houses, and properties. Therefore, monitoring and quantifying these events by accurately measuring wadi discharge has become important for the installation of mitigation structures and early warning systems. In this study, image-based methods were used to measure surface flow velocities during a wadi flash flood in 2018 to test the usefulness of large-scale particle image velocimetry (LSPIV) and space–time image velocimetry (STIV) techniques for the estimation of wadi discharge. The results, which indicated the positive performance of the image-based methods, strengthened our hypothesis that the application of LSPIV and STIV techniques is appropriate for the analysis of wadi flash flood velocities. STIV is suitable for unidirectional flow velocity and LSPIV is reliable and stable for two-dimensional measurement along the wadi channel, the direction of flow pattern which varies with time.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 127 ◽  
Author(s):  
Julian Hofmann ◽  
Holger Schüttrumpf

In times of increasing weather extremes and expanding vulnerable cities, a significant risk to civilian security is posed by heavy rainfall induced flash floods. In contrast to river floods, pluvial flash floods can occur anytime, anywhere and vary enormously due to both terrain and climate factors. Current early warning systems (EWS) are based largely on measuring rainfall intensity or monitoring water levels, whereby the real danger due to urban torrential floods is just as insufficiently considered as the vulnerability of the physical infrastructure. For this reason, this article presents a concept for a risk-based EWS as one integral component of a multi-functional pluvial flood information system (MPFIS). Taking both the pluvial flood hazard as well as the damage potential into account, the EWS identifies the urban areas particularly affected by a forecasted heavy rainfall event and issues object-precise warnings in real-time. Further, the MPFIS performs a georeferenced documentation of occurred events as well as a systematic risk analysis, which at the same time forms the foundation of the proposed EWS. Based on a case study in the German city of Aachen and the event of 29 May 2018, the operation principle of the integrated information system is illustrated.


2020 ◽  
Author(s):  
Keiko Shikako-Thomas ◽  
Ebele RI Mogo ◽  
Valerie Grand-Maison ◽  
Robert Simpson ◽  
Lesley Pritchard-Wiart ◽  
...  

BACKGROUND The gap between research and its practical application in community settings limits its impact on public health. Closing this gap has the potential to improve the well-being of underserved groups, such as children with disabilities. Mobile health holds promise in closing this gap by helping underserved populations build community and improve their access to community resources and supports that can lead to improved health behaviours. OBJECTIVE In this feasibility pilot, we describe the development of the mobile app, Jooay. Jooay was developed in partnership with stakeholders to facilitate access to leisure and physical activity community programs for children and youth with disabilities. We also reflect on the lessons learned throughout the implementation process that are relevant for improving health behaviours for children with disabilities. METHODS We used a participatory action research approach in the development of the app. We also administered a cross-sectional survey to current Jooay users and analysed various app usage indicators to explore use patterns and user feedback and preferences. Finally, we critically appraised the implementation process, using the best practices for implementation research by Peters et al. (2013). RESULTS Our analysis of usage data revealed that access to the Jooay app is concentrated in urban areas. Perceptions, attitudes, and information needs varied according to the type of user. Use of the mobile app changes over time, with usage decreasing after download, showing a need for sustained engagement of app users. Users found value in using the app to identify activities they would not otherwise know about. However, app use alone was not enough to improve participation. We also encountered challenges with survey recruitment and attrition, suggesting the need for more seamless and engaging means for data collection within this population. CONCLUSIONS Using the information gained from this study, we intend to improve the next iteration of the Jooay app to sustain user engagement and behaviour change. We will also conduct a larger study assessing the relationship between urban design and access to inclusive and adaptive leisure programs. This study will inform the improvement of app listings and an understanding of the different user groups.


Author(s):  
Sahar Zia ◽  
Safdar A. Shirazi ◽  
Muhammad Nasar-u-Minallah

Urban flooding is getting attention due to its adverse impact on urban lives in mega cities of the developing world particularly Pakistan. This study aims at finding a suitable methodology for mapping urban flooded areas to estimate urban flooding vulnerability risks in the cities of developing countries particularly Lahore, Pakistan. To detect the urban flooded vulnerability and risk areas due to natural disaster, GIS-based integrated Analytical Hierarchy Process (AHP) is applied for the case of Lahore, which is the second most populous city and capital of the Punjab, Pakistan. For the present research, the flood risk mapping is prepared by considering these significant physical factors like elevation, slope, and distribution of rainfall, land use, density of the drainage network, and soil type. Results show that the land use factor is the most significant to detect vulnerable areas near roads and commercial areas. For instance, this method of detection is 88%, 80% and 70% accurate for roads, commercial and residential areas. The methodology implemented in the present research can provide a practical tool and techniques to relevant policy and decision-makers authorities to prioritize and actions to mitigate flood risk and vulnerabilities and identify certain vulnerable urban areas, while formulating a methodology for future urban flood risk and vulnerability mitigation through an objectively simple and organizationally secure approach. 


2020 ◽  
Author(s):  
Yuan-Fong Su ◽  
Yan-Ting Lin ◽  
Jiun-Huei Jang ◽  
Jen-Yu Han

Abstract. Sophisticated flood simulation in urban areas is a challenging task due to the difficulties in data acquisition and model verification. This study incorporates three rapid-growing technologies, i.e. volunteered geographic information (VGI), unmanned aerial vehicle (UAV), and computational flood simulation (CFS) to reconstruct the flash flood event occurred in 14 June 2015, GongGuan, Taipei. The high-resolution digital elevation model (DEM) generated by a UAV and the real-time VGI photos acquired from social network are served to establish and validate the CFS model, respectively. The DEM data are resampled based on two grid sizes to evaluate the influence of terrain resolution on flood simulations. The results show that flood scenario can be more accurately modelled as DEM resolution increases with better agreement between simulation and observation in terms of flood occurrence time and water depth. The incorporation of UAV and VGI lower the barrier of sophisticated CFS and shows great potential in flood impact and loss assessment in urban areas.


2020 ◽  
Author(s):  
Lavado-Casimiro Waldo ◽  
Jimenez Juan Carlos ◽  
Llauca Harold ◽  
Leon Karen ◽  
Oria Clara ◽  
...  

<p>Hydrological hazards related to flash floods (FF) in Peru have caused many economic and human life losses in recent years. In this context, developing complete early warning systems against FF is necessary to cope impacts. For this purpose, hydrological and hydraulic models coupled to numerical weather models (NWM) that provide forecasts are generally used.</p><p>In this sense, the National Meteorological and Hydrological Service of Peru (SENAMHI) has launched the ANDES initiative (Operational Forecasting System for Flash Floods of SENAMHI in English) to support FF events. </p><p>The pilot region is the Vilcanota basin located in the southern Andes into Cusco department. For this purpose, 4 hydrological stations will be monitoring at hourly time resolution (km 105-Intihuatana, Chilca, Pisac and Sallca). More, 3 video cameras in real time will be employed to velocimetry and water levels monitoring. An exhaustive hydrometry analysis (rating curve) will be implemented to follow discharges day by day. The forcing for the hourly hydrological modelling will be the SENAMHI’s automatic stations (rainfall and temperature). For this purpose a merge spatial prediction methodology between satellite real time precipitation and gauge station precipitation will be develop: GPM (Imerg), GSMAP and Hydroestimator satellite products will be evaluated. Preliminary results of hourly hydrological model shown good results using pure satellite precipitation. In the next months an hydraulic model will be implemented in the channels with more flood vulnerability (Lisflood model) that together with an Numerical weather prediction (NWP) the WRF (The Weather Research and Forecasting) meteorological model will be implemented in the Vilcanota basin. The update will be done every six hours and to improve the output results a bias correction methodology  will be use. Finally using these forecasts will be assimilated in the hydrological and hydraulic models.</p><p>This research is part of the multidisciplinary collaboration between British and Peruvian scientists (NERC, CONCYTEC).</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Winston T. L. Chow ◽  
Brendan D. Cheong ◽  
Beatrice H. Ho

We investigated flooding patterns in the urbanised city-state of Singapore through a multimethod approach combining station precipitation data with archival newspaper and governmental records; changes in flash floods frequencies or reported impacts of floods towards Singapore society were documented. We subsequently discussed potential flooding impacts in the context of urban vulnerability, based on future urbanisation and forecasted precipitation projections for Singapore. We find that, despite effective flood management, (i) significant increases in reported flash flood frequency occurred in contemporary (post-2000) relative to preceding (1984–1999) periods, (ii) these flash floods coincide with more localised, “patchy” storm events, (iii) storms in recent years are also more intense and frequent, and (iv) floods result in low human casualties but have high economic costs via insurance damage claims. We assess that Singapore presently has low vulnerability to floods vis-à-vis other regional cities largely due to holistic flood management via consistent and successful infrastructural development, widespread flood monitoring, and effective advisory platforms. We conclude, however, that future vulnerabilities may increase from stresses arising from physical exposure to climate change and from demographic sensitivity via rapid population growth. Anticipating these changes is potentially useful in maintaining the high resilience of Singapore towards this hydrometeorological hazard.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Hanaa A. Megahed ◽  
Mohammed A. El Bastawesy

Abstract Background This paper discusses the hydrological problems assessment of flash floods and the encroachment of wastewater in selected urban areas of Greater Cairo using remote sensing and geographic information system (GIS) techniques. The integration of hydrogeological and geomorphological analyses with the fieldwork of drainage basins (Wadi Degla) hosting these urban areas endeavors to provide the optimum mitigation measures that can be feasibly taken to achieve sustainability of the urban areas and water resources available. Results Landsat 5 and Sentinel-2 satellite images were obtained shortly before and after flash flood events and were downloaded and analyzed to define the active channels, urban interference, storage areas, and the natural depressions response. The quantitative flash flood estimates include total GSMap meteorological data sets, parameters of rainfall depths from remote sensing data, active channel area from satellite images, and storage areas that flooded. In GIS, digital elevation model was used to estimate the hydrographic parameters: flow direction within the catchment, flow accumulation, time zone of the catchment, and estimating of the water volume in the largely inundated depressions. Conclusions Based on the results obtained from the study of available satellite images, it has been shown that there are two significant hydrological problems, including the lack of flash flood mitigation measures for urban areas, as the wastewater depressions and sanitary facilities are dotting in the downstream areas.


10.29007/l6jd ◽  
2018 ◽  
Author(s):  
Laurent Guillaume Courty ◽  
Jose Agustín Breña-Naranjo ◽  
Adrián Pedrozo-Acuña

We present a flood risk mapping framework created in the context of the update of the Mexican flood risk atlas. This framework is based on a nation-wide GIS database of map time-series. Those maps are used as forcing for a deterministic, raster-based numerical model. For each catchment of interest, the model retrieves the data from the GIS and perform the computation on the specified area. The results are written directly in the GIS database, which facilitate their post-processing. This methodology allows 1) the generation of flood risk maps in cities located across the national territory, without too much effort in the pre and post-processing of information and 2) a very efficient process to create new flood maps for urban areas that have not been included in the original batch.


Sign in / Sign up

Export Citation Format

Share Document