scholarly journals Rainfall simulation experiments in the Southwestern USA using the Walnut Gulch Rainfall Simulator

2017 ◽  
Author(s):  
Viktor Polyakov ◽  
Jeffry Stone ◽  
Chandra Holifield Collins ◽  
Mark A. Nearing ◽  
Ginger Paige ◽  
...  

Abstract. The dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semi-arid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with various degree of disturbance by grazing, wildfire, or brush removal. This dataset advances our understanding of basic hydrological and biological processes that drive soil erosion on arid rangelands. It can be used to quantify runoff, infiltration, and erosion rates on a variety of ecological sites in the Southwestern USA. Inclusion of wildfire and brush treatment locations combined with long term observations makes it important for studying vegetation recovery, ecological transitions, and effect of management. It is also a valuable resource for erosion model parameterization and validation. The data set available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (https://doi.org/doi:10.15482/USDA.ADC/1358583).

2018 ◽  
Vol 10 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Viktor Polyakov ◽  
Jeffry Stone ◽  
Chandra Holifield Collins ◽  
Mark A. Nearing ◽  
Ginger Paige ◽  
...  

Abstract. This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with various degrees of disturbance by grazing, wildfire, or brush removal. This dataset advances our understanding of basic hydrological and biological processes that drive soil erosion on arid rangelands. It can be used to estimate runoff, infiltration, and erosion rates at a variety of ecological sites in the Southwestern USA. The inclusion of wildfire and brush treatment locations combined with long-term observations makes it important for studying vegetation recovery, ecological transitions, and the effect of management. It is also a valuable resource for erosion model parameterization and validation. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1358583).


2005 ◽  
Vol 17 (2) ◽  
pp. 163-180 ◽  
Author(s):  
C. O.A. Coelho ◽  
A. J.D. Ferreira ◽  
A. Laouina ◽  
A.-K. Boulet ◽  
M. Chaker ◽  
...  

The ongoing intensification of grazing as well as the replacement of traditional land management systems in the Maghreb has brought to the forefront the fundamental role of land-use in determining soil erosion hazard. This paper reports on erosion rates and soil hydrological characteristics of a variety of land uses in Morocco and Tunisia. The results were obtained through rainfall simulation experiments carried out in the field using a portable simulator, following the design of CERDÀ et al. (1997). Traditional land management systems - typically involving a combination of agriculture, animal husbandry and forestry - produced the least amounts of overland flow and the lowest soil erosion rates. Over-exploitation of these systems apparently has only minor hydrological and erosional impacts. Heavily grazed, degraded "maquis" shrublands, on the other hand, produced considerable amounts of overland flow. At the plot scale of the rainfall simulation experiments (0.24 m2), the corresponding sediment loads are rather insignificant. Nevertheless, slopes where "maquis" shrublands (which generally have very compacted soils) occur upslope from more erodible soils may present a major erosion hazard.


2021 ◽  
Author(s):  
Martin Neumann ◽  
Petr Kavka ◽  
Jan Devátý ◽  
Luděk Strouhal ◽  
Adam Tejkl ◽  
...  

<p>Vineyards are vulnerable to soill loss due to the several inherent factors highly discussed in the literature. A lot of research is being carried out on this topic and hundreds of experiments were conducted around the world in past decades. The use of rainfall simulators is very extensive with prominent results; however, the use of different scales is scarce in exact places but using different plot sizes. Small (1-4 m<sup>2</sup>) and big plots (>4 m<sup>2</sup>) can detect the initiation of specific processes such as surface runoff and initial of soill particle detachment. However, mechanisms such as connectivity, sedimentation or linear erosion differ among plot sizes. Also, the size, high water consumption and time-consuming of the big rainfall simulator makes its use something scarce. Therefore, the main goal of this research was to compare the big and small rainfall simulators and the obtained results considering the continuous development of various rainfall simulators on the CTU’s Department of Landscape Water Management (Prague, Czech Republic). The small rainfall simulator with 1x1 m plot and the big one covering two experimental plots of 8x1 m size were used next to each other in a conventional vineyard in the viticultural region of Moravia. The results showed different processes both of them key to understand from a holistic point of view the inititaion of soil erosion processes in vineyards.</p><p>This study has been supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS20/156/OHK1/3T/11 and the Project QK1910029.</p>


2020 ◽  
Vol 12 (2) ◽  
pp. 1347-1365 ◽  
Author(s):  
C. Jason Williams ◽  
Frederick B. Pierson ◽  
Patrick R. Kormos ◽  
Osama Z. Al-Hamdan ◽  
Justin C. Johnson

Abstract. Rainfall simulation and overland-flow experiments enhance understanding of surface hydrology and erosion processes, quantify runoff and erosion rates, and provide valuable data for developing and testing predictive models. We present a unique dataset (1021 experimental plots) of rainfall simulation (1300 plot runs) and overland-flow (838 plot runs) experimental plot data paired with measures of vegetation, ground cover, and surface soil physical properties spanning point to hillslope scales. The experimental data were collected at three sloping sagebrush (Artemisia spp.) sites in the Great Basin, USA, each subjected to woodland encroachment and with conditions representative of intact wooded shrublands and 1–9 years following wildfire, prescribed fire, and/or tree cutting and shredding tree-removal treatments. The methodologies applied in data collection and the cross-scale experimental design uniquely provide scale-dependent, separate measures of interrill (rain splash and sheet flow processes, 0.5 m2 plots) and concentrated overland-flow runoff and erosion rates (∼9 m2 plots), along with collective rates for these same processes combined over the patch scale (13 m2 plots). The dataset provides a valuable source for developing, assessing, and calibrating/validating runoff and erosion models applicable to diverse plant community dynamics with varying vegetation, ground cover, and surface soil conditions. The experimental data advance understanding and quantification of surface hydrologic and erosion processes for the research domain and potentially for other patchy-vegetated rangeland landscapes elsewhere. Lastly, the unique nature of repeated measures spanning numerous treatments and timescales delivers a valuable dataset for examining long-term landscape vegetation, soil, hydrology, and erosion responses to various management actions, land use, and natural disturbances. The dataset is available from the US Department of Agriculture National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (last access: 7 May 2020) (doi: https://doi.org/10.15482/USDA.ADC/1504518; Pierson et al., 2019).


2019 ◽  
Author(s):  
C. Jason Williams ◽  
Frederick B. Pierson ◽  
Patrick R. Kormos ◽  
Osama Z. Al-Hamdan ◽  
Justin C. Johnson

Abstract. Rainfall simulation and overland-flow experiments enhance understanding of surface hydrology and erosion processes, quantify runoff and erosion rates, and provide valuable data for developing and testing predictive models. We present a unique dataset (1021 experimental plots) of rainfall simulation (1300 plot runs) and overland flow (838 plot runs) experimental plot data paired with measures of vegetation, ground cover, and surface soil physical properties spanning point to hillslope scales. The experimental data were collected at three sloping sagebrush (Artemisia spp.) sites in the Great Basin, USA, each subjected to woodland-encroachment and with conditions representative of intact wooded-shrublands and 1–9 yr following wildfire, prescribed fire, and/or tree cutting and shredding tree-removal treatments. The methodologies applied in data collection and the cross-scale experimental design uniquely provide scale-dependent, separate measures of interrill (rainsplash and sheetflow processes) and concentrated overland-flow runoff and erosion rates along with collective rates for these same processes combined over the patch scale (tens of meters). The dataset provides a valuable source for developing, assessing, and calibrating/validating runoff and erosion models applicable to diverse plant community dynamics with varying vegetation, ground cover, and surface soil conditions. The experimental data advance understanding and quantification of surface hydrologic and erosion processes for the research domain and potentially for other patchy-vegetated rangeland landscapes elsewhere. Lastly, the unique nature of repeated measures spanning numerous treatments and time scales delivers a valuable dataset for examining long-term landscape vegetation, soil, hydrology, and erosion responses to various management actions, land use, and natural disturbances. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1504518; Pierson et al., 2019).


2020 ◽  
Author(s):  
Jorge Isidoro ◽  
Ian Pattison ◽  
Thomas Iserloh ◽  
João de Lima ◽  
Daniel Green ◽  
...  

<p>Rainfall simulation is widely used within hydrological and geomorphological sciences and is particularly important in the study of rainfall-runoff, erosion and pollutant transport processes. Rainfall simulators have been applied within laboratory- and field-based studies and have the advantages of enabling controlled and reproducible rainfall event characteristics in relation to rainfall intensity, duration, and drop spectra. The flexibility and advantages of using rainfall simulators to study a wide range of research objectives has resulted in significant diversity in the type, sizing, form, operation and methodologies of rainfall simulators, and an extensive review of rainfall simulator research has led to more than 250 different rainfall simulator setups being identified in the literature. Rainfall simulators come in all different shapes and sizes!</p><p>The adaptability of rainfall simulators to study a wide range of research areas of varying scale ultimately results in several issues when comparing results and outputs obtained from different simulator setups. In fact, comparisons between studies can be very difficult, if not impossible, as the different measurement methods, artificial rainfall event characteristics and test conditions result in considerable difficulties when benchmarking results and findings obtained from rainfall simulation experiments. Thus, the scientific community should establish set methodological procedures to allow comparisons between results obtained from different rainfall simulator setups. Harmonization of basic procedures in rainfall simulator based studies in the fields of hydrological and geomorphological sciences would ensure that results between different rainfall simulator studies are comparable, standardised and regulated. The first step in this process involves standardising rainfall simulators design characteristics, whereas further steps should focus on measurement methods and metrics so results can be compared.</p><p>This paper aims to bring together current understanding on the use of rainfall simulators within hydrological and geomorphological research, and provide a platform to discuss and enhance understanding of the requirements on the standardisation of rainfall simulator based experimental research. This paper also aims to establish an international research community focused on advancing standardisation in rainfall simulation based at different research facilities and institutes, and will kick-start discussions leading up to a future international symposium dealing with these issues (date TBC). Everyone is invited to join this (small) step towards standardisation in rainfall simulation!</p>


2021 ◽  
Author(s):  
Thomas Iserloh ◽  
Jorge M. G. P. Isidoro ◽  
João L. M. P. de Lima ◽  
Miriam Marzen ◽  
M. Isabel P. de Lima ◽  
...  

<p>Rainfall simulation experiments are widely used in soil science, geomorphology and hydrology research and teaching. Such experimental setups are particularly important in the study of rainfall-runoff, erosion and pollutant transport processes. Rainfall simulators have been applied within laboratory- and field-based studies and have the advantage of enabling controlled and reproducible rainfall events of varying intensity, duration and drop spectra. The flexibility and adaptability of rainfall simulators to examine diverse research applications of varying temporal and spatial scales means that hundreds of tailor-made rainfall simulator setups can be identified across the literature. Although it is beneficial for researchers to adapt their experimental designs to suit their specific research objectives, the diversity in the type, sizing, form, operation and methodologies of rainfall simulators ultimately results in complications when comparing results and outputs obtained between studies.</p><p>Currently, comparisons between studies can be very difficult, if not impossible, as the different measurement methods, artificial rainfall event characteristics and test conditions result in considerable difficulties when benchmarking results and findings obtained from rainfall simulation experiments. We recommend that the scientific community should establish a set of methodological procedures aimed at harmonising basic procedures in rainfall simulator-based studies in the fields of hydrological and geomorphological sciences. This would ensure that results obtained from different rainfall simulator studies and setups are harmonised, regulated and comparable. On the one hand, this process involves harmonising rainfall simulators design characteristics, whereas further steps should focus on measurement methods and metrics so results can be more readily compared.</p><p>This presentation highlights the inherit problems in benchmarking and comparing studies at present due to large variations in the way that researchers and institutions assess and quantify rainfall simulator performance and present results. Some degree of ‘standardisation’ of rainfall simulator approaches is needed. However, standardising approaches used within rainfall simulation does not allow researchers to adapt their experimental setups to suit their specific research needs, which is one of the key benefits of using rainfall simulators. Instead, ‘harmonisation’ (i.e. ensuring that the scientific community develop a set of regulated and comparable methodological procedures and best practices for use in rainfall simulator studies whilst still allowing some degree of adaptability for specific research practices) is required. Here we present a series of harmonisation procedures, which should be developed to ensure that rainfall simulators are designed and constructed to allow for harmonisation, as well as suggesting a series of steps towards harmonising the methods and metrics used to quantify and compare experimental results.</p><p>With these objectives in mind, we aim to stimulate the discussion and enhance understanding of the difficulties and requirements of rainfall simulator based experimental research, namely by creating a platform that embraces and consults the International research community across multiple research facilities and institutes. This presentation will kick-start discussions (via web seminar sessions beginning in Summer 2021) leading up to a future international symposium addressing and acting upon these issues and disseminating the findings of this consultation period (Spring/Summer 2022 in Coimbra, Portugal). Everyone is invited to join this step towards harmonisation in rainfall simulation.</p>


CATENA ◽  
2019 ◽  
Vol 174 ◽  
pp. 95-103 ◽  
Author(s):  
S.D. Keesstra ◽  
J. Rodrigo-Comino ◽  
A. Novara ◽  
A. Giménez-Morera ◽  
M. Pulido ◽  
...  

2014 ◽  
Vol 14 (13) ◽  
pp. 19747-19789
Author(s):  
F. Tan ◽  
H. S. Lim ◽  
K. Abdullah ◽  
T. L. Yoon ◽  
B. Holben

Abstract. In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.


Sign in / Sign up

Export Citation Format

Share Document