scholarly journals Retrospect and prospect of a section-based stratigraphic and palaeontological database – Geobiodiversity Database

2020 ◽  
Author(s):  
Hong-He Xu ◽  
Zhi-Bin Niu ◽  
Yan-Sen Chen

Abstract. Big data are significant to the quantitative analysis and contribute to the data-driven scientific research and discoveries. Here the thorough introduction is given on the Geobiodiversity database (GBDB), a comprehensive stratigraphic and palaeontological database. The GBDB includes abundant geological records from China and contributes a serial of scientific studies on early Palaeozoic palaeogeography, tectonic and biodiversity evolution of China. Nevertheless, the existing problems of the GBDB limited the using of its data. The turnover and improvement of the GBDB were started in 2019. Besides the data collecting, processing and visualization as the GBDB did previously, the database and the website are optimized and re-designed, the new GBDB working team pays more attention to data analyzing with the professional artificial intelligence techniques. GBDB is complementary to other related databases, and further collaborations are proposed to mutually benefit and push forward the quantitative research of palaeontology and stratigraphy in the era of big data. The datasets (Xu, 2020) are freely downloadable from http://doi.org/10.5281/zenodo.3667645.

2020 ◽  
Author(s):  
Hong-He Xu ◽  
Zhi-Bin Niu ◽  
Yan-Sen Chen

Abstract. Big data are significant to the quantitative analysis and contribute to the data-driven scientific research and discoveries. Here the thorough introduction is given on the Geobiodiversity database (GBDB), a comprehensive stratigraphic and palaeontological database. The GBDB includes abundant geological records from China and contributes a serial of scientific studies on early Palaeozoic palaeogeography, tectonic and biodiversity evolution of China. Nevertheless, the existing problems of the GBDB limited the using of its data. The turnover and improvement of the GBDB were started in 2019. Besides the data collecting, processing and visualization as the GBDB did previously, the database and the website are optimized and re-designed, the new GBDB working team pays more attention to data analyzing with the professional artificial intelligence techniques. GBDB is complementary to other related databases and further collaborations are proposed to mutually benefit and push forward the quantitative research of palaeontology and stratigraphy in the era of big data. The persistent snapshot of the GBDB data can be found at: http://doi.org/10.5281/zenodo.3667645 (Xu, 2020).


2020 ◽  
Vol 12 (4) ◽  
pp. 3443-3452
Author(s):  
Hong-He Xu ◽  
Zhi-Bin Niu ◽  
Yan-Sen Chen

Abstract. Big data are significant for quantitative analysis and contribute to data-driven scientific research and discoveries. Here a brief introduction is given to the Geobiodiversity Database (GBDB), a comprehensive stratigraphic and palaeontological database, and its data. The GBDB includes abundant geological records from China and has supported a series of scientific studies on the Paleozoic palaeogeography and tectonic and biodiversity evolution of China. The data that the GBDB has including those that are newly collected are described in detail; the statistical results and structure of the data are given. A comparison between the GBDB; the largest palaeobiological database, the Paleobiology Database (PBDB); and the geological rock database Macrostrat is drawn. The GBDB and other databases are complementary in palaeontological and stratigraphic research. The GBDB will continually provide users access to detailed palaeontological and stratigraphic data based on publications. Non-structured data of palaeontology and stratigraphy will also be included in the GBDB, and they will be organically correlated with the existing data of the GBDB, making the GBDB more widely used for both researchers and anyone who is interested in fossils and strata. The GBDB fossil and stratum dataset (Xu, 2020) is freely downloadable from https://doi.org/10.5281/zenodo.4245604.


Author(s):  
Marina Johnson ◽  
Rashmi Jain ◽  
Peggy Brennan-Tonetta ◽  
Ethne Swartz ◽  
Deborah Silver ◽  
...  

Urban Studies ◽  
2021 ◽  
pp. 004209802110140
Author(s):  
Sarah Barns

This commentary interrogates what it means for routine urban behaviours to now be replicating themselves computationally. The emergence of autonomous or artificial intelligence points to the powerful role of big data in the city, as increasingly powerful computational models are now capable of replicating and reproducing existing spatial patterns and activities. I discuss these emergent urban systems of learned or trained intelligence as being at once radical and routine. Just as the material and behavioural conditions that give rise to urban big data demand attention, so do the generative design principles of data-driven models of urban behaviour, as they are increasingly put to use in the production of replicable, autonomous urban futures.


2022 ◽  
pp. 187-204
Author(s):  
María A. Pérez-Juárez ◽  
Javier M. Aguiar-Pérez ◽  
Miguel Alonso-Felipe ◽  
Javier Del-Pozo-Velázquez ◽  
Saúl Rozada-Raneros ◽  
...  

A lot of millennials have been educated in gamified schools where they played Kahoot several times per week, and where applications like Classcraft made them feel like the protagonists of a videogame in which they had to accumulate points to be able to level up. All those that were educated in a gamified environment feel it is natural and logical that gamification is used in all areas. For this reason, gamification is increasingly becoming important in different fields including financial services, bringing new challenges. Gamification allows financial institutions to provide personalized and compelling experiences. Big data and artificial intelligence techniques are called to play an essential role in the gamification of financial services. This chapter aims to explore the possibilities of using artificial intelligence and big data techniques to support gamified financial services which are essential for digital natives but also increasingly important for digital immigrants.


Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 235
Author(s):  
Paulo Garcia ◽  
Francine Darroch ◽  
Leah West ◽  
Lauren BrooksCleator

The use of technological solutions to address the production of goods and offering of services is ubiquitous. Health and social issues, however, have only slowly been permeated by technological solutions. Whilst several advances have been made in health in recent years, the adoption of technology to combat social problems has lagged behind. In this paper, we explore Big Data-driven Artificial Intelligence (AI) applied to social systems; i.e., social computing, the concept of artificial intelligence as an enabler of novel social solutions. Through a critical analysis of the literature, we elaborate on the social and human interaction aspects of technology that must be in place to achieve such enabling and address the limitations of the current state of the art in this regard. We review cultural, political, and other societal impacts of social computing, impact on vulnerable groups, and ethically-aligned design of social computing systems. We show that this is not merely an engineering problem, but rather the intersection of engineering with health sciences, social sciences, psychology, policy, and law. We then illustrate the concept of ethically-designed social computing with a use case of our ongoing research, where social computing is used to support safety and security in home-sharing settings, in an attempt to simultaneously combat youth homelessness and address loneliness in seniors, identifying the risks and potential rewards of such a social computing application.


2020 ◽  
Vol 26 (4) ◽  
pp. 190-194
Author(s):  
Jacek Pietraszek ◽  
Norbert Radek ◽  
Andrii V. Goroshko

AbstractThe introduction of solutions conventionally called Industry 4.0 to the industry resulted in the need to make many changes in the traditional procedures of industrial data analysis based on the DOE (Design of Experiments) methodology. The increase in the number of controlled and observed factors considered, the intensity of the data stream and the size of the analyzed datasets revealed the shortcomings of the existing procedures. Modifying procedures by adapting Big Data solutions and data-driven methods is becoming an increasingly pressing need. The article presents the current methods of DOE, considers the existing problems caused by the introduction of mass automation and data integration under Industry 4.0, and indicates the most promising areas in which to look for possible problem solutions.


Sign in / Sign up

Export Citation Format

Share Document