scholarly journals A Global Compilation of U-series Dated Fossil Coral Sea-level Indicators for the Last Interglacial Period (MIS 5e)

2020 ◽  
Author(s):  
Peter M. Chutcharavan ◽  
Andrea Dutton

Abstract. This dataset is a comprehensive, global compilation of published uranium series (U-series) dated fossil coral records from ~150–110 thousand years ago, as well as associated elevation measurements and sample metadata. In total, 1312 U-series measurements from 994 unique coral colonies are included in the current version of the dataset, all of which have been normalized and recalculated using the same decay constant values. Two example geochemical screening criteria have been included to assist users with identifying altered fossil corals that display geochemical open-system behaviour, and the originally published interpretations on age quality have been preserved within the sample metadata. Additionally, a clear distinction has been made between coral colonies that are in primary growth position, which may be used for relative sea-level reconstructions and colonies that have been transported/reworked, which cannot be used for these purposes. Future research efforts involving fossil coral sea-level reconstructions should emphasize an integrated and holistic approach that combines careful assessment of U-series age quality with high-precision surveying techniques and detailed facies/stratigraphic observations. This database is available at http://doi.org/10.5281/zenodo.4309796 (Chutcharavan and Dutton 2020).

2012 ◽  
Vol 78 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Daniel R. Muhs ◽  
John M. Pandolfi ◽  
Kathleen R. Simmons ◽  
R. Randall Schumann

AbstractCuraçao has reef terraces with the potential to provide sea-level histories of interglacial periods. Ages of the Hato (upper) unit of the “Lower Terrace” indicate that this reef dates to the last interglacial period, Marine Isotope Stage (MIS) 5.5. On Curaçao, this high sea stand lasted at least 8000 yr (~ 126 to ~ 118 ka). Elevations and age of this reef show that late Quaternary uplift rates on Curaçao are low, 0.026–0.054 m/ka, consistent with its tectonic setting. Ages of ~ 200 ka for corals from the older Cortalein unit of the Lower Terrace correlate this reef to MIS 7, with paleo-sea level estimates ranging from − 3.3 m to + 2.3 m. The estimates are in agreement with those for MIS 7 made from other localities and indicate that the penultimate interglacial period was a time of significant warmth, on a par with the present interglacial period. The ~ 400 ka (MIS 11) Middle Terrace I on Curaçao, dated by others, may have formed from a paleo-sea level of + 8.3 to + 10.0 m, or (less likely) + 17 m to + 20 m. The lower estimates are conservative compared to previous studies, but still require major ice sheet loss from Greenland and Antarctica.


1986 ◽  
Vol 25 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Aaron Kaufman

The 104 available [230Th/234U] analyses of unrecrystallized corals from stable emerged terraces indicate that the last interglacial period occurred approximately 125,000 yr ago. An estimate is made of the exact duration of this period by accounting for the surprisingly small distribution width observed among the 80 most reliable analyses. This distribution width is compared with those obtained for model populations generated by assuming various characteristic analytical errors and various lengths of the last interglacial period. The results show that (1) if there was only a single rise in sea level, it probably lasted no more than 12,000 yr, in agreement with previous estimates; and (2) if there were two separate rises of sea level, the gap between them must have been less than 7500 yr and not 12,200 as proposed by some authors.


2020 ◽  
Author(s):  
Alexander Robinson ◽  
Emilie Capron ◽  
Jorge Alvarez-Solas ◽  
Michael Bender ◽  
Heiko Goelzer ◽  
...  

<p>There is still no consensus concerning the evolution of the Greenland ice sheet during the Last Interglacial period (LIG, 130-115 kyr ago). Ice cores indicate that the ice sheet survived over most of the continent. Proxy data indicate temperature anomalies of up to 6-8°C. However, under these conditions, models predict almost complete deglaciation. This paradox must be resolved to be able to quantify Greenland’s sea-level contribution during the LIG as well as to understand its sensitivity to future climate change. Here we analyze the available evidence and outline strategies to reconcile modeling and data efforts for Greenland during the LIG.</p>


2013 ◽  
Vol 9 (6) ◽  
pp. 2525-2547 ◽  
Author(s):  
J. Jouzel

Abstract. For about 50 yr, ice cores have provided a wealth of information about past climatic and environmental changes. Ice cores from Greenland, Antarctica and other glacier-covered regions now encompass a variety of time scales. However, the longer time scales (e.g. at least back to the Last Glacial period) are covered by deep ice cores, the number of which is still very limited: seven from Greenland, with only one providing an undisturbed record of a part of the last interglacial period, and a dozen from Antarctica, with the longest record covering the last 800 000 yr. This article aims to summarize this successful adventure initiated by a few pioneers and their teams and to review key scientific results by focusing on climate (in particular water isotopes) and climate-related (e.g. greenhouse gases) reconstructions. Future research is well taken into account by the four projects defined by IPICS. However, it remains a challenge to get an intact record of the Last Interglacial in Greenland and to extend the Antarctic record through the mid-Pleistocene transition, if possible back to 1.5 Ma.


2002 ◽  
Vol 58 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Daniel R. Muhs

AbstractThe last interglacial period has a timing and duration that can be estimated from U-series dating of emergent, coral-bearing deposits on tectonically stable coastlines. High-precision dating from Bermuda, the Bahamas, Hawaii, and Australia suggests that the last interglacial period had a sea level at least as high as present from ∼128,000 to 116,000 yr B.P. Sea level reached a near-present level more quickly after the close of the penultimate glacial period than at the close of the last glacial period and the duration of high sea level is longer than that implied by the deep-sea record.


1999 ◽  
Vol 26 (20) ◽  
pp. 3129-3132 ◽  
Author(s):  
Konrad A. Hughen ◽  
Daniel P. Schrag ◽  
Stein B. Jacobsen ◽  
Wahyoe Hantoro

2021 ◽  
Vol 13 (9) ◽  
pp. 4313-4329
Author(s):  
Kathrine Maxwell ◽  
Hildegard Westphal ◽  
Alessio Rovere

Abstract. Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a process analog for a warmer world. Analysis of sea-level proxies formed in this period helps in constraining both regional and global drivers of sea-level change. In Southeast Asia, several studies have reported elevation and age information on MIS 5e sea-level proxies, such as fossil coral reef terraces or tidal notches, but a standardized database of such data was hitherto missing. In this paper, we produced such a sea-level database using the framework of the World Atlas of Last Interglacial Shorelines (WALIS; https://warmcoasts.eu/world-atlas.html). Overall, we screened and reviewed 14 studies on Last Interglacial sea-level indicators in Southeast Asia, from which we report 43 proxies (42 coral reef terraces and 1 tidal notch) that were correlated to 134 dated samples. Five data points date to MIS 5a (80 ka), six data points are MIS 5c (100 ka), and the rest are dated to MIS 5e. The database compiled in this study is available at https://doi.org/10.5281/zenodo.5040784 (Maxwell et al., 2021).


2021 ◽  
Vol 13 (3) ◽  
pp. 953-968
Author(s):  
J. Andrew G. Cooper ◽  
Andrew N. Green

Abstract. Evidence for sea-level change during and around Marine Isotope Stage (MIS) 5e (ca. 125 ka) in southern Africa derives from a wide variety of geomorphic and sedimentological sea-level indicators, supported in the past 2 decades by absolute chronological control, particularly on littoral deposits, some of which have a quantifiable relationship to former sea level. In addition to these proxies, data provided by both terrestrial (dune sediments and archaeological remains) and marine (lagoonal and nearshore littoral sediments) limiting points provide broad constraints on sea level. Here, we review publications describing such data points. Using the framework of the World Atlas of Last Interglacial Shorelines, we insert in a standardized database (https://doi.org/10.5281/zenodo.4459297, Cooper and Green, 2020) all the elements available to assess former palaeo-relative sea level (palaeo-RSL) and the chronological constraints associated with them (including uncertainties). Overall, we reviewed 71 studies, from which we extracted 39 sea-level indicators and 26 limiting points. As far as age attribution is concerned, early analysis of molluscs and whole-rock beachrock samples using U series allowed dating of several sea-level indicators during the 1980s, but the more widespread application of optically stimulated luminescence (OSL) dating since 2004 has yielded many more (and more accurate) sea-level indicators from several sites. This has helped resolve the nature and timing of MIS 5e shorelines and has the potential to further elucidate the apparent presence of two or more sea-level peaks at several South African sites during this interval. The standardized sea-level database presented in this paper is the first of its kind for this region. Future research should be directed to improve the stratigraphic description of last interglacial shorelines and to obtain better dating, high-accuracy elevation measurements with better palaeo-RSL interpretation.


2017 ◽  
Vol 88 (3) ◽  
pp. 409-429 ◽  
Author(s):  
Daniel R. Muhs ◽  
Kathleen R. Simmons

AbstractAlthough uranium series (U-series) ages of growth-position fossil corals are important to Quaternary sea-level history, coral clast reworking from storms can yield ages on a terrace dating to more than one high-sea stand, confounding interpretations of sea-level history. On northern Barbados, U-series ages corals from a thick storm deposit are not always younger with successively higher stratigraphic positions, but all date to the last interglacial period (~127 ka to ~112 ka), Marine Isotope Substage (MIS) 5.5. The storm deposit ages are consistent with the ages of growth-position corals found at the base of the section and at landward localities on this terrace. Thus, in this case, analysis of only a few corals would not have led to an error in interpreting sea-level history. In contrast, a notch cut into older Pleistocene limestone below the MIS 5.5 terrace contains corals that date to both MIS 5.5 (~125 ka) and MIS 5.3 (~108 ka). We infer that the notch formed during MIS 5.3 and the MIS 5.5 corals are reworked. Similar multiple ages of corals on terraces have been reported elsewhere on Barbados. Thus, care must be taken in interpreting U-series ages of corals that are reported without consideration of taphonomy.


Sign in / Sign up

Export Citation Format

Share Document