scholarly journals High-resolution daily gridded datasets of air temperature and wind speed for Europe

2015 ◽  
Vol 8 (2) ◽  
pp. 649-702 ◽  
Author(s):  
S. Brinckmann ◽  
S. Krähenmann ◽  
P. Bissolli

Abstract. New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001–2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1–2 °C and 1–1.5 m s−1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

2016 ◽  
Vol 8 (2) ◽  
pp. 491-516 ◽  
Author(s):  
Sven Brinckmann ◽  
Stefan Krähenmann ◽  
Peter Bissolli

Abstract. New high-resolution data sets for near-surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001–2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are SYNOP observations, partly supplemented by station data from the ECA&D data set (http://www.ecad.eu). These data are quality tested to eliminate erroneous data. By spatial interpolation of these station observations, grid data in a resolution of 0.044° (≈ 5km) on a rotated grid with virtual North Pole at 39.25° N, 162° W are derived. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al.(2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are used for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA-Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Variance explained by the regression ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1–2 K and 1–1.5 ms−1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The data sets presented in this article are published at doi:10.5676/DWD_CDC/DECREG0110v2.


2020 ◽  
Vol 27 (4) ◽  
pp. 98-102
Author(s):  
Haqqi Yasin ◽  
Luma Abdullah

Average daily data of solar radiation, relative humidity, wind speed and air temperature from 1980 to 2008 are used to estimate the daily reference evapotranspiration in the Mosul City, North of Iraq. ETo calculator software with the Penman Monteith method standardized by the Food and Agriculture Organization is used for calculations. Further, a nonlinear regression approach using SPSS Statistics is utilized to drive the daily reference evapotranspiration relationships in which ETo is function to one or more of the average daily air temperature, actual daily sunshine duration, measured wind speed at 2m height and relative humidity


2014 ◽  
Vol 14 (4) ◽  
pp. 1999-2013 ◽  
Author(s):  
J. C. Péré ◽  
B. Bessagnet ◽  
M. Mallet ◽  
F. Waquet ◽  
I. Chiapello ◽  
...  

Abstract. In this study, we investigate the shortwave aerosol direct radiative forcing (ADRF) and its feedback on air temperature and atmospheric dynamics during a major fire event that occurred in Russia during August 2010. The methodology is based on an offline coupling between the CHIMERE chemistry-transport and the Weather Research and Forecasting (WRF) models. First, simulations for the period 5–12 August 2010 have been evaluated by using AERONET (AErosol RObotic NETwork) and satellite measurements of the POLarization and Directionality of the Earth's Reflectance (POLDER) and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) sensors. During this period, elevated POLDER aerosol optical thickness (AOT) is found over a large part of eastern Europe, with values above 2 (at 550 nm) in the aerosol plume. According to CALIOP observations, particles remain confined to the first five kilometres of the atmospheric layer. Comparisons with satellite measurements show the ability of CHIMERE to reproduce the regional and vertical distribution of aerosols during their transport from the source region. Over Moscow, AERONET measurements indicate an important increase of AOT (340 nm) from 0.7 on 5 August to 2–4 between 6 and 10 August when the aerosol plume was advected over the city. Particles are mainly observed in the fine size mode (radius in the range 0.2–0.4 μm) and are characterized by elevated single-scattering albedo (SSA) (0.95–0.96 between 440 and 1020 nm). Comparisons of simulations with AERONET measurements show that aerosol physical–optical properties (size distribution, AOT, SSA) have been well simulated over Moscow in terms of intensity and/or spectral dependence. Secondly, modelled aerosol optical properties have been used as input in the radiative transfer code of WRF to evaluate their direct radiative impact. Simulations indicate a significant reduction of solar radiation at the ground (up to 80–150 W m−2 in diurnal averages over a large part of eastern Europe due to the presence of the aerosol plume. This ADRF causes an important reduction of the near-surface air temperature between 0.2 and 2.6° on a regional scale. Moscow has been affected by the aerosol plume, especially between 6 and 10 August. During this period, aerosol causes a significant reduction of surface shortwave radiation (up to 70–84 W m−2 in diurnal averages) with a moderate part (20–30%) due to solar absorption within the aerosol layer. The resulting feedbacks lead to a cooling of the air up to 1.6° at the surface and 0.1° at an altitude of 1500–2000 m (in diurnal averages), that contribute to stabilize the atmospheric boundary layer (ABL). Indeed, a reduction of the ABL height of 13 to 65% has been simulated during daytime in presence of aerosols. This decrease is the result of a lower air entrainment as the vertical wind speed in the ABL is shown to be reduced by 5 to 80% (at midday) when the feedback of the ADRF is taken into account. However, the ADRF is shown to have a lower impact on the horizontal wind speed, suggesting that the dilution of particles would be mainly affected by the weakening of the ABL development and associated vertical entrainment. Indeed, CHIMERE simulations driven by the WRF meteorological fields including this ADRF feedback result in a large increase in the modelled near-surface PM10 concentrations (up to 99%). This is due to their lower vertical dilution in the ABL, which tend to reduce model biases with the ground PM10 values observed over Moscow during this specific period.


2012 ◽  
Vol 5 (1) ◽  
pp. 57-75
Author(s):  
Andrzej Araźny ◽  
Rajmund Przybylak

Abstract The article presents results of research on the development of air temperature and relative humidity at a height of 5 cm above the active surface of the terminal lateral moraine of the Aavatsmark Glacier, relative to its exposure in the summer season of 2010. Variations in the two conditions were analysed for five measurement sites situated on northerly (SN), easterly (SE), southerly (SS) and westerly (SW) slopes, as well as on the flat top surface of the moraine (STop), in different weather conditions. The article also includes a temperature and humidity stratification in the near surface air layer (5-200 cm) above the moraine. The issues were investigated for mean values from the whole period of research, as well as for individual days demonstrating distinct degrees of cloudiness and wind speed.


2015 ◽  
Vol 32 (5) ◽  
pp. 943-960 ◽  
Author(s):  
W. Scott Gunter ◽  
John L. Schroeder ◽  
Brian D. Hirth

AbstractTypical methods used to acquire wind profiles from Doppler radar measurements rely on plan position indicator (PPI) scans being performed at multiple elevation angles to utilize the velocity–azimuth display technique or to construct dual-Doppler synthesis. These techniques, as well as those employed by wind profilers, often produce wind profiles that lack the spatial or temporal resolution to resolve finescale features. If two radars perform range–height indicator (RHI) scans (constant azimuth, multiple elevations) along azimuths separated by approximately 90°, then the intersection of the coordinated RHI planes represents a vertical set of points where dual-Doppler wind syntheses are possible and wind speed and direction profiles can be retrieved. This method also allows for the generation of high-resolution wind time histories that can be compared to anemometer time histories. This study focuses on the use of the coordinated RHI scanning strategy by two high-resolution mobile Doppler radars in close proximity to a 200-m instrumented tower. In one of the first high-resolution, long-duration comparisons of dual-Doppler wind synthesis with in situ anemometry, the mean and turbulence states of the wind measured by each platform were compared in varying atmospheric conditions. Examination of mean wind speed and direction profiles in both clear-air (nonprecipitating) and precipitating environments revealed excellent agreement above approximately 50 m. Below this level, dual-Doppler wind speeds were still good but slightly overestimated as compared to the anemometer-measured wind speeds in heavy precipitation. Bulk turbulence parameters were also slightly underestimated by the dual-Doppler syntheses.


2018 ◽  
Vol 31 (10) ◽  
pp. 3789-3810 ◽  
Author(s):  
Daniel Walton ◽  
Alex Hall

Abstract High-resolution gridded datasets are in high demand because they are spatially complete and include important finescale details. Previous assessments have been limited to two to three gridded datasets or analyzed the datasets only at the station locations. Here, eight high-resolution gridded temperature datasets are assessed two ways: at the stations, by comparing with Global Historical Climatology Network–Daily data; and away from the stations, using physical principles. This assessment includes six station-based datasets, one interpolated reanalysis, and one dynamically downscaled reanalysis. California is used as a test domain because of its complex terrain and coastlines, features known to differentiate gridded datasets. As expected, climatologies of station-based datasets agree closely with station data. However, away from stations, spread in climatologies can exceed 6°C. Some station-based datasets are very likely biased near the coast and in complex terrain, due to inaccurate lapse rates. Many station-based datasets have large unphysical trends (>1°C decade−1) due to unhomogenized or missing station data—an issue that has been fixed in some datasets by using homogenization algorithms. Meanwhile, reanalysis-based gridded datasets have systematic biases relative to station data. Dynamically downscaled reanalysis has smaller biases than interpolated reanalysis, and has more realistic variability and trends. Dynamical downscaling also captures snow–albedo feedback, which station-based datasets miss. Overall, these results indicate that 1) gridded dataset choice can be a substantial source of uncertainty, and 2) some datasets are better suited for certain applications.


2021 ◽  
Author(s):  
Karl Lapo ◽  
Anita Freundorfer ◽  
Antonia Fritz ◽  
Johann Schneider ◽  
Johannes Olesch ◽  
...  

Abstract. The weak-wind Stable Boundary Layer (wwSBL) is poorly described by theory and breaks basic assumptions necessary for observations of turbulence. Understanding the wwSBL requires distributed observations capable of separating between submeso and turbulent scales. To this end, we present the Large Eddy Observatory, Voitsumra Experiment 2019 (LOVE19) which featured 1350 m of fiber optic distributed sensing (FODS) of air temperature and wind speed, as well as an experimental wind direction method, at scales as fine as 1 s and 0.127 m in addition to a suite of point observations of turbulence and ground-based remote sensing. Additionally, flights with a fiber optic cable attached to a tethered balloon provide an unprecedented detailed view of the boundary layer structure with a resolution of 0.254 m and 10 s between 1–200 m height. Two examples are provided demonstrating the unique capabilities of the LOVE19 data for examining boundary layer processes: 1) FODS observations between 1m and ~200 m height during a period of gravity waves propagating across the entire boundary layer and 2) tracking a near-surface, transient submeso structure that causes an intermittent burst of turbulence. All data can be accessed at Zenodo through the DOI https://doi.org/10.5281/zenodo.4312976 (Lapo et al., 2020a).


2019 ◽  
Vol 2 (1) ◽  
pp. 15
Author(s):  
Hasti Widyasamratri ◽  
Arif Kusumawanto ◽  
Fadhilla Tri Nugrahaini

The outdoor thermal performance reflects the microclimate condition in any significant area. This study simulated the thermal performance with measured and modeled three meteorological parameters, air temperature (Ta), relative humidity (RH), and wind speed in the dry season tropical city. The research focused on thermal performance simulation and distribution, here, we were neglecting anthropogenic activities as the heat source. The result showed that there were different ranges between a measured and simulated value of Ta, RH, and wind speed. The highest Ta difference between measure and simulation occurred at 11 AM, which was 1.97⸰C. The highest difference of RH occurred at 13 PM (26.75%), and the highest different of wind speed was at 11 AM (0.37 m/s) respectively. The heat distribution in the focus area was influenced by the solar direction which impacted the ground and near-surface air temperature.  


Sign in / Sign up

Export Citation Format

Share Document