Empirical Equations to Estimate Evapotranspiration in Mosul City

2020 ◽  
Vol 27 (4) ◽  
pp. 98-102
Author(s):  
Haqqi Yasin ◽  
Luma Abdullah

Average daily data of solar radiation, relative humidity, wind speed and air temperature from 1980 to 2008 are used to estimate the daily reference evapotranspiration in the Mosul City, North of Iraq. ETo calculator software with the Penman Monteith method standardized by the Food and Agriculture Organization is used for calculations. Further, a nonlinear regression approach using SPSS Statistics is utilized to drive the daily reference evapotranspiration relationships in which ETo is function to one or more of the average daily air temperature, actual daily sunshine duration, measured wind speed at 2m height and relative humidity

2012 ◽  
Vol 44 (4) ◽  
pp. 706-722 ◽  
Author(s):  
Cosmo Ngongondo ◽  
Chong-Yu Xu ◽  
Lena M. Tallaksen ◽  
Berhanu Alemaw

This study evaluated the performance of the Food and Agriculture Organization (FAO) Penman–Monteith (PM) reference evapotranspiration (ET0) method for various limited data scenarios in southern Malawi. The study further evaluated the full data PM method against the radiation-based Priestley–Taylor (PT) and the temperature-based Hargreaves (HAG) methods, which are less data-intensive approaches commonly used to estimate ET0 in data-scarce situations. A comprehensive daily climate dataset observed at the Nchalo Sugar Estate in southern Malawi for the period 1971–2007 was the basis of the study. The results suggested that lack of data on wind speed and actual vapour pressure did not significantly affect the PM ET0 estimates. However, the estimation of radiation using various combinations of observed wind speed and relative humidity all resulted in significant deviations from the PM ET0. Further, the HAG and PT methods significantly underestimated the PM. However, the PM method computed with estimated climate variables instead of observed climate variables still outperformed both the PT and HAG methods if their original parameters and estimated radiation were used. Thus, new monthly parameters for the PT and the HAG methods are proposed for more accurate daily ET0 estimates.


2015 ◽  
Vol 35 (1) ◽  
pp. 27-38 ◽  
Author(s):  
ZILDA C. DE LACERDA ◽  
JOSÉ E. P. TURCO

One approach to verify the adequacy of estimation methods of reference evapotranspiration is the comparison with the Penman-Monteith method, recommended by the United Nations of Food and Agriculture Organization - FAO, as the standard method for estimating ET0. This study aimed to compare methods for estimating ET0, Makkink (MK), Hargreaves (HG) and Solar Radiation (RS), with Penman-Monteith (PM). For this purpose, we used daily data of global solar radiation, air temperature, relative humidity and wind speed for the year 2010, obtained through the automatic meteorological station, with latitude 18° 91' 66" S, longitude 48° 25' 05" W and altitude of 869m, at the National Institute of Meteorology situated in the Campus of Federal University of Uberlandia - MG, Brazil. Analysis of results for the period were carried out in daily basis, using regression analysis and considering the linear model y = ax, where the dependent variable was the method of Penman-Monteith and the independent, the estimation of ET0 by evaluated methods. Methodology was used to check the influence of standard deviation of daily ET0 in comparison of methods. The evaluation indicated that methods of Solar Radiation and Penman-Monteith cannot be compared, yet the method of Hargreaves indicates the most efficient adjustment to estimate ETo.


2016 ◽  
Vol 48 (2) ◽  
pp. 480-497 ◽  
Author(s):  
Murat Cobaner ◽  
Hatice Citakoğlu ◽  
Tefaruk Haktanir ◽  
Ozgur Kisi

The Food and Agriculture Organization advocates the Penman–Monteith (FAO-56 PM) equation as the standard model for estimation of the reference evapotranspiration (ET0) because it is considered to have better accuracy. However, in regions where meteorological variables such as solar radiation, wind speed, and relative humidity are not gauged, the Hargreaves–Samani (HS) equation is resorted to as an alternative simply because it needs minimum and maximum air temperatures only as the explanatory variables. In this study, first the HS equation is applied to the monthly means of measured temperature data recorded at 275 meteorology stations in Turkey. Next, the coefficients of the HS equation are calibrated using the ET0 values given by the FAO-56 PM equation at all these stations. Next, the HS equation is modified by adding the wind speed as an extra explanatory variable, separately in each one of seven geographical regions of Turkey, which is observed to yield smaller error statistics as compared to the original HS equation. It is concluded that for estimation of the ET0 in regions where meteorological measurements are scarce, the HS equation modified in a similar manner can be used with better precision.


2015 ◽  
Vol 7 (1) ◽  
pp. 128-141 ◽  
Author(s):  
Yuan Liu ◽  
Buchun Liu ◽  
Xiaojuan Yang ◽  
Wei Bai

Evapotranspiration integrates atmospheric demand and surface conditions. The Penman-Monteith equation was used to calculate annual and seasonal reference evapotranspiration (ET0) and thermodynamic and aerodynamic components (ETrad and ETaero) at 77 stations across northeast China, 1961–2010. The results were: (1) annual ETrad and ETaero had different regional distribution, annual ETrad values decreased from south to north, whereas the highest ETaero values were recorded in the eastern and western regions, the lowest in the central region; (2) seasonal ETaero distributions were similar to seasonal ET0, with a south–north longitudinal pattern, while seasonal ETrad distributions had a latitudinal east-west pattern; and (3) in the group for ET0 containing 69 sampling stations, effects of climatic variables on ET0 followed sunshine hours > relative humidity > maximum temperature > wind speed. Changes in sunshine hours had the greatest effect on ETrad, but wind speed and relative humidity were the most important variables to ETaero. The decline in sunshine duration, wind speed, or both over the study period appeared to be the major cause of reduced potential evapotranspiration in most of NEC. Wind speed had opposite effects on ETrad and ETaero, and therefore the effect of wind speed on ET0 was not significant.


2019 ◽  
Vol 34 (1) ◽  
pp. 79-88
Author(s):  
Virginia Ellen do Nascimento Paulino ◽  
Ticiana Marinho de Carvalho Studart ◽  
José Nilson B. Campos ◽  
Carlos J. Pestana ◽  
Renata Mendes Luna ◽  
...  

Abstract Irrigation has a substantial share in total world water demand. At the global level, the withdrawal ratio for agriculture is 69 percent. Irrigation is necessary to compensate evapotranspiration (ET) deficit due to insufficient precipitation. Knowing the impacts of climatic changes on meteorological variables that directly affect the ET is important for successful climate adaptation. This paper analyzes annual trends in measured meteorological variables and in the crop reference evapotranspiration (ET0), at eight climatological stations in Ceará State, Brazil. Two statistical tests for trend analysis were used - Mann-Kendall and linear regression. The results indicate positive trend, statistically significant, in the maximum air temperature in five of eight stations. Minimum air temperature showed positive trend in three stations. Wind speed, sunshine hours and relative humidity presented positive and negative trends. These irregular patterns directly impacted ET0 in three stations. It seems that the increasing trend in ET0 was probably due to a significant increase detected in maximum temperature and minimum air temperature, not fully offset by the decrease in wind speed and relative humidity. The warning from these results is that water demand for irrigation is expected to significantly increase over the next decades on in Jaguaribe River Basin.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 176-183
Author(s):  
Iug Lopes ◽  
Miguel Julio Machado Guimarães ◽  
Juliana Maria Medrado de Melo ◽  
Ceres Duarte Guedes Cabral de Almeida ◽  
Breno Lopes ◽  
...  

The objective was to perform a comparative study of the meteorological elements data that most cause changes in the reference Evapotranspiration (ETo, mm) and its own value, of automatic weather stations AWS and conventional weather stations CWS of the Sertão and Agreste regions of Pernambuco State. The ETo was calculated on a daily scale using the standard method proposed by the Food and Agriculture Organization (FAO), Penman-Monteith (FAO-56). The ETo information obtained from AWS data can be used to update the weather database of stations, since there is a good relationship between the ETo data obtained from CWS and AWS, statistically determined by the Willmott's concordance index (d > 0.7). The observed variations in the weather elements: air temperature, relative humidity, wind speed, and global solar radiation have not caused significant changes in the ETo calculation.


1964 ◽  
Vol 4 (13) ◽  
pp. 178 ◽  
Author(s):  
BG Collins

Conditions favouring sporulation of blue mould (Peronospora tabacina Adam) having been established in the laboratory, a theoretical model has now been used to express the critical parameter, i.e. the relative humidity near the leaf surface where the spores form, in terms of the ambient atmospheric conditions. To test the validity of this model, wind speed, air temperature, and relative humidity mere measured over four growing seasons in three tobacco crops in the Ovens Valley, Victoria, and related to times of sporulation of the mould observed concurrently in these crops. 'Critical relative humidity,' a function of wind speed, air temperature, and heat loss from the crop is shown to be a more serviceable indicator of likelihood of sporulation than either ambient relative humidity or rainfall.


Author(s):  
L.V. Malytska ◽  
V. O Balabukh

In Ukraine, as in the world, substantial climatic changes have happened throughout past decades. It is a fact that they are manifested in changing of parameters of the thermal regime, regimes of wind and humidity. It is expected that they will be observed also in future that will lead to aggravation of negative effects and risks due to climate change. That determines the relevance of the problem of forecasting such changes in future both globally and regionally. After all, knowledge of climate’s behavior in future is very important in the development of strategies, program and measures to adapt to climate change. The article is devoted to assessing spatio-temporal distribution main climatic indicators (air temperature, wind speed and relative humidity) in Ukraine, their variability and the probable values to the middle of the 21st century (2021-2050). Projection of changes in meteorological conditions was made for A1B scenario of SRES family using data of the regional climate model REMO and data from the hydrometeorological observation network of Ukraine (175 stations). Estimated data obtained from the European FP-6 ENSEMBLES project with a resolution of 25 km. For spatial distribution (mapping) we used open-source Geographic Information System QGIS, type of geographic coordinate system for project is WGS84. In the middle of the XXI century, if A1B scenario is released, it is expected a significant changes of climatic parameters regarding the 1981-2010 climatic norm: air temperature is rise by 1,5 °C, average wind speed is decrease by 5-8%, relative humidity in winter probably drop by 2%, but in summer it rises by 1,5%. The unidirectionality of the changes is characteristic only of air temperature, for wind speed and relative humidity the changes are in different directions. The intensity of changes is also not uniform across the country for all climatic parameters, has its regional and seasonal features. Statistical likelihood for most of highlighted changes for all climatic parameters is 66 % and more, the air temperature change is virtually certain (p-level <0.001).


2018 ◽  
Vol 33 (1) ◽  
pp. 301-315 ◽  
Author(s):  
Wesley G. Page ◽  
Natalie S. Wagenbrenner ◽  
Bret W. Butler ◽  
Jason M. Forthofer ◽  
Chris Gibson

Abstract Wildland fire managers in the United States currently utilize the gridded forecasts from the National Digital Forecast Database (NDFD) to make fire behavior predictions across complex landscapes during large wildfires. However, little is known about the NDFDs performance in remote locations with complex topography for weather variables important for fire behavior prediction, including air temperature, relative humidity, and wind speed. In this study NDFD forecasts for calendar year 2015 were evaluated in fire-prone locations across the conterminous United States during periods with the potential for active fire spread using the model performance statistics of root-mean-square error (RMSE), mean fractional bias (MFB), and mean bias error (MBE). Results indicated that NDFD forecasts of air temperature and relative humidity performed well with RMSEs of about 2°C and 10%–11%, respectively. However, wind speed was increasingly underpredicted when observed wind speeds exceeded about 4 m s−1, with MFB and MBE values of approximately −15% and −0.5 m s−1, respectively. The importance of accurate wind speed forecasts in terms of fire behavior prediction was confirmed, and the forecast accuracies needed to achieve “good” surface head fire rate-of-spread predictions were estimated as ±20%–30% of the observed wind speed. Weather station location, the specific forecast office, and terrain complexity had the largest impacts on wind speed forecast error, although the relatively low variance explained by the model (~37%) suggests that other variables are likely to be important. Based on these results it is suggested that wildland fire managers should use caution when utilizing the NDFD wind speed forecasts if high wind speed events are anticipated.


2017 ◽  
Vol 18 (3) ◽  
pp. 777-798 ◽  
Author(s):  
Shanlei Sun ◽  
Haishan Chen ◽  
Ge Sun ◽  
Weimin Ju ◽  
Guojie Wang ◽  
...  

Abstract This study investigated monthly and annual reference evapotranspiration changes over southwestern China (SWC) from 1960 to 2012, using the Food and Agriculture Organization of the United Nations’ report 56 (FAO-56) Penman–Monteith equation and routine meteorological observations at 269 weather sites. During 1960–2012, the monthly and annual decreased at most sites. Moreover, the SWC regional average trend in annual was significantly negative (p &lt; 0.05); this trend was the same in most months. A new separation method using several numerical experiments was proposed to quantify each driving factor’s contribution to changes and exhibited higher accuracy based on several validation criteria, after which an attribution analysis was performed. Across SWC, the declining annual was mainly due to decreased net radiation (RN). Spatially, the annual changes at most sites in eastern SWC (excluding southeastern West Guangxi) were generally due to RN, whereas wind speed (WND) or vapor pressure deficit (VPD) was the determinant at other sites. Nevertheless, the determinants differed among 12 months. For the whole SWC, increased VPD in February and decreased WND in April, May, and October were the determinant of decreased ; however, decreased RN was the determinant in other months. Overall, the determinant of the monthly changes exhibited a complex spatial pattern. A complete analysis of changes and the related physical mechanisms in SWC is necessary to better understand hydroclimatological extremes (e.g., droughts) and to develop appropriate strategies to sustain regional development (e.g., water resources and agriculture). Importantly, this separation method provides new perspective for quantitative attribution analyses and thus may be implemented in various scientific fields (e.g., climatology and hydrology).


Sign in / Sign up

Export Citation Format

Share Document