scholarly journals Planform river channel perturbations resulting from active landsliding in the High Himalaya of Bhutan

2020 ◽  
Author(s):  
Larissa de Palézieux ◽  
Kerry Leith ◽  
Simon Loew

Abstract. Large creeping landslides are persistent features in mountainous landscapes. Evaluating the long-term evolution of these features and associated present-day hazards is however difficult. We use a Fourier transform to characterize planform channel sinuosity and find that the amplitude at given wavelengths follows the power law of pink noise (1 / fnoiseα) with an exponent of α = 1.1, which is consistent with a fractal distribution. This allows us to distinguish local landslide perturbations from the background sinuosity of the unperturbed channels. In order to quantify the interaction of landslides with river channels, we use a new metric for landslide-induced channel offset, which allows us to identify exceptional amplitudes associated with landslide activity. We find that 83 % of the 226 mapped large creeping landslides in the High Himalaya of Bhutan have generated lateral channel migration in the direction of the landslide displacement. Assuming landslide initiation is associated with knickpoint propagation, our derived stream power normalized rates of landslide-induced channel offset range from 2 · 10−1 to 2 · 10−2 m−0.9. These rates are consistent with an early period of relatively rapid landslide displacement followed by a long period of stabilization, and finally, a gradual acceleration of more mature landslides. Assuming constant bedrock erodibility, displacement rates derived from the landslides in our study region may provide inside into the evolution of large creeping landslides over a period of 1 Myr.

1985 ◽  
Vol 23 (3) ◽  
pp. 287-300 ◽  
Author(s):  
James C. Knox

Dimensions of Holocene relict channels and sedimentological characteristics of point bars associated with these relict channels were used to reconstruct a Holocene history of long-term changes in magnitudes of 1.58-yr floods in Upper Mississippi Valley watersheds of southwestern Wisconsin. The reconstructed record of floods shows relatively large and persistent (nonrandom) departures from contemporary long-term average flood magnitudes. The flood history indicates climatic changes that are broadly similar to climatic changes indicated from fossil pollen in the same region. The Holocene floods ranged from about 10–15% larger to 20–30% smaller than contemporary floods of the same recurrence frequency. Large floods were characteristic between about 6000 – 4500 and 3000 – 2000 yr B.P., and during a brief interval after 1200 yr B.P. Small floods were common between about 8000 – 6500, 4500 – 3000, and 2000 – 1200 yr B.P. These fluvial responses were found to be closely associated with a long-term episodic mobility and storage of sediments in the Wisconsin watersheds. During periods of relatively large floods, relatively rapid lateral channel migration either reworked or removed extensive tracts of valley bottom alluvium. In contrast, during periods of relatively small floods, relatively slow lateral channel migration is apparent and the channel and floodplain system appear to have been relatively stable.


2018 ◽  
Vol 40 ◽  
pp. 03013 ◽  
Author(s):  
Alessandra Crosato ◽  
José Bonilla-Porras ◽  
Arthur Pinkse ◽  
Tsegaye Yirga Tiga

Long series of groynes are built from both river sides to narrow river channels and prevent bank erosion with the aim to improve the conditions for inland navigation and prevent lateral channel migration. Single groynes or short series of groynes are built to impede local bank erosion, deviate the water flow, free an intake or fix the position of migrating bars at certain locations. These structures divert the flow towards the opposite river side where channel bed erosion increases the risk of bank failure. Flow and river bed adaptation have been extensively studied, especially for long series of groynes. Instead, studies dealing with opposite bank erosion caused by single or short series of groynes are still lacking. We investigated this phenomenon in the laboratory and using 2D numerical models with LES. This paper shows some preliminary results.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


2013 ◽  
Vol 8 (15) ◽  
pp. 33-40
Author(s):  
Javier Enrique Arévalo Peña

En la planeación de las próximas generaciones de redes inalámbricas es importante contar con estudios de radio propagación que permitan establecer diseños adecuados para ofrecer los servicios proyectados por las nuevas tecnologías a los usuarios móviles. En este artículo se presentan aspectos relacionados con el comportamiento de cobertura de radio propagación del modelo propuesto por el 3GPP (3rd Generation Partnership Project) para un entorno urbano en una red LTE (Long Term Evolution) empleando sistemas de antenas convencionales y sistemas de antena adaptativas (AAS). Para ello se utiliza la herramienta de software ICS Designer y se establece como escenario los alrededores la Fundación Universidad Autónoma de Colombia ubicada en el centro urbano de la ciudad de Bogotá D. C.


Sign in / Sign up

Export Citation Format

Share Document