scholarly journals The UKC2 regional coupled environmental prediction system

2018 ◽  
Vol 11 (1) ◽  
pp. 1-42 ◽  
Author(s):  
Huw W. Lewis ◽  
Juan Manuel Castillo Sanchez ◽  
Jennifer Graham ◽  
Andrew Saulter ◽  
Jorge Bornemann ◽  
...  

Abstract. It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere–land–ocean–wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed.

2017 ◽  
Author(s):  
Huw W. Lewis ◽  
Juan Manuel Castillo Sanchez ◽  
Jennifer Graham ◽  
Andrew Saulter ◽  
Jorge Bornemann ◽  
...  

Abstract. It is hypothesised that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, requires a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-west European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for 6 contrasting case studies of 5-day duration is presented. Results demonstrate that at least comparable performance can be achieved with the UKC2 system to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and peak wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed.


2021 ◽  
Author(s):  
Yan Xue ◽  
Dorothy Koch ◽  
Vijay Tallapragada ◽  
Avichal Mehra ◽  
Fanglin Yang ◽  
...  

<p>The Unified Forecast System (UFS) is a community-based coupled Earth modeling system, designed to support the Weather Enterprise and also be the source system for NOAA’s operations. NOAA’s Unified Forecast System Research to Operations Project (UFS-R2O) aims to develop the next generation coupled Global Forecast System (GFS v17)/Global Ensemble Forecast System (GEFS v13) targeting operational implementation in FY24. The Project is part of the larger UFS community and includes scientists from NOAA Labs and Centers, NCAR, UCAR, NRL and several U.S. universities.</p><p>The UFS is targeted to be a six-way coupled Earth prediction system, consisting of the FV3 dynamical core with the Common Community Physics Package (CCPP) for the atmosphere,  MOM6 for the ocean, CICE6 for the sea ice, WW3 for ocean waves, Noah-MP for the land surface and GOCART for aerosols.  Currently, four of the six model components have been coupled using the Community Mediator for Earth Prediction Systems (CMEPS). All the components of the coupled system will be initialized with a weakly coupled data assimilation system based on the Joint Effort for Data Assimilation Integration (JEDI) framework. A 30-year coupled reanalysis and reforecast will be conducted for model calibration and post-processing forecast products. The UFS is the basis for the future updates of the deterministic GFS medium-range weather forecast up to 16 days, the ensemble GEFS subseasonal forecast up to 45 days, and the seasonal forecasts up to one year using the new Seasonal Forecast System (SFS) planned to replace the operational Climate Forecast System (CFSv2).</p><p>Several prototypes of a four-way coupled atmosphere-ocean-ice-wave model have been built and tested with a C384 horizontal grid (~25km) and 64 vertical levels for the atmospheric model, and a ¼ degree tripolar grid for the ocean and ice model components. The presentation will highlight the results of these prototype runs. The UFS-R2O Project has made the latest UFS prototype (S2Sp5) output available on Amazon Web Services (AWS). Researchers interested in the S2S prediction and model development are invited to evaluate the UFS S2Sp5 data. Analysis of the data may include process-based evaluations, diagnostic measures that reveal coupled feedback processes, model biases and S2S forecast skill estimations. To identify and prioritize key metrics in evaluating the UFS applications, the UFS-R2O Project is soliciting community inputs through a online survey and UFS Evaluation Metric Workshop in Feb 2021. The metrics will be incorporated into the METplus verification tools for both research and operation. </p><p>A few more prototypes are planned beyond S2Sp5 which include increasing the vertical resolution of the atmospheric model to 127 vertical levels, the transition of land model from Noah to Noah-MP, inclusion of aerosol component, advanced physics suites as well as stochastic physics parameterizations to account for uncertainties in each model component. Coarser and higher resolution configurations along with coupled ensemble prototypes are also being built in order to evaluate the resolution-dependence of forecast biases and to assess the benefit vs cost of higher resolution. The development code is available on Github, and the UFS community contributes to the development through a R2O process.</p>


2018 ◽  
Author(s):  
Huw W. Lewis ◽  
Juan Manuel Castillo Sanchez ◽  
Alex Arnold ◽  
Joachim Fallmann ◽  
Andrew Saulter ◽  
...  

Abstract. This paper describes an updated configuration of the regional coupled research system, termed UKC3, developed and evaluated under the UK Environmental Prediction collaboration. This represents a further step towards a vision of simulating the numerous interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land using more integrated regional coupled prediction systems at km-scale resolution. The UKC3 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean surface waves (WAVEWATCH III), coupled together using OASIS3-MCT libraries. The major update introduced since the UKC2 configuration is an explicit representation of wave processes in the ocean and their feedbacks through wave-to-ocean coupling. Ocean model results demonstrate that wave coupling, in particular representing the wave modified surface drag, has a small but positive improvement on the agreement between simulated sea surface temperatures and in situ observations, relative to simulations without wave feedbacks. Other incremental developments to the coupled modelling capability introduced since the UKC2 configuration are also detailed. Coupled regional prediction systems are of interest for applications across a range of timescales, from hours to decades ahead. The first results of simulations run over extended periods, covering four experiments each of order one month in duration are therefore analysed and discussed in the context of further characterising the potential benefits of coupled prediction on forecast skill, and on the stability of such systems over longer time periods. Results across atmosphere, ocean and wave components are shown to be of at least comparable skill to the equivalent uncoupled control simulations, with notable improvements demonstrated in surface temperature and wave state predictions in some near-coastal regions, and in wind speeds over the sea.


2019 ◽  
Vol 12 (6) ◽  
pp. 2357-2400 ◽  
Author(s):  
Huw W. Lewis ◽  
Juan Manuel Castillo Sanchez ◽  
Alex Arnold ◽  
Joachim Fallmann ◽  
Andrew Saulter ◽  
...  

Abstract. This paper describes an updated configuration of the regional coupled research system, termed UKC3, developed and evaluated under the UK Environmental Prediction collaboration. This represents a further step towards a vision of simulating the numerous interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land using more integrated regional coupled prediction systems at kilometre-scale resolution. The UKC3 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean surface waves (WAVEWATCH III®), coupled together using OASIS3-MCT libraries. The major update introduced since the UKC2 configuration is an explicit representation of wave–ocean feedbacks through introduction of wave-to-ocean coupling. Ocean model results demonstrate that wave coupling, in particular representing the wave-modified surface drag, has a small but positive improvement on the agreement between simulated sea surface temperatures and in situ observations, relative to simulations without wave feedbacks. Other incremental developments to the coupled modelling capability introduced since the UKC2 configuration are also detailed. Coupled regional prediction systems are of interest for applications across a range of timescales, from hours to decades ahead. The first results from four simulation experiments, each of the order of 1 month in duration, are analysed and discussed in the context of characterizing the potential benefits of coupled prediction on forecast skill. Results across atmosphere, ocean and wave components are shown to be stable over time periods of weeks. The coupled approach shows notable improvements in surface temperature, wave state (in near-coastal regions) and wind speed over the sea, whereas the prediction quality of other quantities shows no significant improvement or degradation relative to the equivalent uncoupled control simulations.


2021 ◽  
Author(s):  
Gianpaolo Balsamo ◽  
Souhail Boussetta

<p>The ECMWF operational land surface model, based on the Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) is the baseline for global weather, climate and environmental applications at ECMWF. In order to expedite its progress and benefit from international collaboration, an ECLand platform has been designed to host advanced and modular schemes. ECLand is paving the way toward a land model that could support a wider range of modelling applications, facilitating global kilometer scales testing as envisaged in the Copernicus and Destination Earth programmes. This presentation introduces the CHTESSEL and its recent new developments that aims at hosting new research applications.</p><p>These new improvements touch upon different components of the model: (i) vegetation, (ii) snow, (iii) soil hydrology, (iv) open water/lakes (v) rivers and (vi) urban areas. The developments are evaluated separately with either offline simulations or coupled experiments, depending on their level of operational readiness, illustrating the benchmarking criteria for assessing process fidelity with regards to land surface fluxes and reservoirs involved in water-energy-carbon exchange, and within the Earth system prediction framework, as foreseen to enter upcoming ECMWF operational cycles.</p><p>Reference: Souhail Boussetta, Gianpaolo Balsamo*, Anna Agustì-Panareda, Gabriele Arduini, Anton Beljaars, Emanuel Dutra, Glenn Carver, Margarita Choulga, Ioan Hadade, Cinzia Mazzetti, Joaquìn Munõz-Sabater, Joe McNorton, Christel Prudhomme, Patricia De Rosnay, Irina Sandu, Nils Wedi, Dai Yamazaki, Ervin Zsoter, 2021: ECLand: an ECMWF land surface modelling platform, MDPI Atmosphere, (in prep).</p>


2021 ◽  
Author(s):  
Stefan Hagemann ◽  
Ute Daewel ◽  
Volker Matthias ◽  
Tobias Stacke

<p>River discharge and the associated nutrient loads are important factors that influence the functioning of the marine ecosystem. Lateral inflows from land carrying fresh, nutrient-rich water determine coastal physical conditions and nutrient concentration and, hence, dominantly influence primary production in the system. Since this forms the basis of the trophic food web, riverine nutrient concentrations impact the variability of the whole coastal ecosystem. This process becomes even more relevant in systems like the Baltic Sea, which is almost decoupled from the open ocean and land-borne nutrients play a major role for ecosystem productivity on seasonal up to decadal time scales.</p><p> </p><p>In order to represent the effects of climate or land use change on nutrient availability, a coupled system approach is required to simulate the transport of nutrients across Earth system compartments. This comprises their transport within the atmosphere, the deposition and human application at the surface, the lateral transport over the land surface into the ocean and their dynamics and transformation in the marine ecosystem. In our study, we combine these processes in a modelling chain within the GCOAST (Geesthacht Coupled cOAstal model SysTem) framework for the northern European region. This modelling chain comprises:</p><p> </p><ul><li>Simulation of emissions, atmospheric transport and deposition with the chemistry transport model CMAQ at 36 km grid resolution using atmospheric forcing from the coastDat3 data that have been generated with the regional climate model COSMO-CLM over Europe at 0.11° resolution using ERA-Interim re-analyses as boundary conditions</li> <li>Simulation of inert processes at the land surface with the global hydrology model HydroPy (former MPI-HM), i.e. considering total nitrogen without any chemical reactions</li> <li>Riverine transport with the Hydrological Discharge (HD) model at 0.0833° spatial resolution</li> <li>Simulation of the North Sea and Baltic Sea ecosystems with 3D coupled physical-biogeochemical NPZD-model ECOSMO II at about 10 km resolution</li> </ul><p> </p><p>We will present first results and their validation from this exercise.</p><p> </p>


2020 ◽  
Vol 8 (3) ◽  
pp. 60-63
Author(s):  
Jonas Harvard ◽  
Mats Hyvönen ◽  
Ingela Wadbring

In the last decade, the development of small, remotely operated multicopters with cameras, so-called drones, has made aerial photography easily available. Consumers and institutions now use drones in a variety of ways, both for personal entertainment and professionally. The application of drones in media production and journalism is of particular interest, as it provides insight into the complex interplay between technology, the economic and legal constraints of the media market, professional cultures and audience preferences. The thematic issue <em>Journalism from Above: Drones, the Media, and the Transformation of Journalistic Practice</em> presents new research concerning the role of drones in journalism and media production. The issue brings together scholars representing a variety of approaches and perspectives. A broad selection of empirical cases from Finland, Spain, Sweden, the UK and the US form the basis of an exploration of the changing relations between the media, technology and society. The articles address topics such as: Adaption of drone technology in the newsrooms; audience preferences and reactions in a changing media landscape; the relation between journalists and public authorities who use drones; and attitudes from journalistic practitioners as well as historical and future perspectives.


2021 ◽  
Author(s):  
Julia Rulent ◽  
Lucy M. Bricheno ◽  
Mattias J. A. Green ◽  
Ivan D. Haigh ◽  
Huw Lewis

Abstract. The interaction between waves, surges and astronomical tides can lead to high coastal total water level (TWL), which can in turn lead to coastal flooding. Here, a high resolution (1.5 km) simulation from a UK-focused regional coupled environmental prediction system is used to investigate the extreme events of winter 2013/4 around the UK and Irish coasts. The aim is to analyse the spatial distribution of coastal TWL and its components during this period by assessing 1- the relative contribution of different TWL components around the coast, 2- how extreme waves, surges and tide interacted and if they occurred simultaneously 3- if this has implications in defining the severity of coastal hazard conditions. The TWL components’ coastal distribution in winter 2013/4 was not constant in space, impacting differently over different regions. High (> 90th percentile) waves and surges occurred simultaneously at any tidal stage, including high tide (7.7 % of cases), but more often over the flood tide. During periods of high flood risk a hazard proxy, defined as the sum of the sea surface height and half the significant wave height, at least doubled from average over ¾ of the coast. These results have important implications for the risk management sector.


Sign in / Sign up

Export Citation Format

Share Document