scholarly journals Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS)

2018 ◽  
Vol 11 (5) ◽  
pp. 1989-2007 ◽  
Author(s):  
Miao Jing ◽  
Falk Heße ◽  
Rohini Kumar ◽  
Wenqing Wang ◽  
Thomas Fischer ◽  
...  

Abstract. Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river–groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM–OGS v1.0) is evaluated by a case study in the central European mesoscale river basin – Nägelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash–Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems.

2017 ◽  
Author(s):  
Miao Jing ◽  
Falk Heße ◽  
Wenqing Wang ◽  
Thomas Fischer ◽  
Marc Walther ◽  
...  

Abstract. Most of the current large scale hydrological models do not contain a physically-based groundwater flow component. The main difficulties in large-scale groundwater modeling include the efficient representation of unsaturated zone flow, the characterization of dynamic groundwater-surface water interaction and the numerical stability while preserving complex physical processes and high resolution. To address these problems, we propose a highly-scalable coupled hydrologic and groundwater model (mHM#OGS) based on the integration of two open-source modeling codes: the mesoscale hydrologic Model (mHM) and the finite element simulator OpenGeoSys (OGS). mHM#OGS is coupled using a boundary condition-based coupling scheme that dynamically links the surface and subsurface parts. Nested time stepping allows smaller time steps for typically faster surface runoff routing in mHM and larger time steps for slower subsurface flow in OGS. mHM#OGS features the coupling interface which can transfer the groundwater recharge and river baseflow rate between mHM and OpenGeoSys. Verification of the coupled model was conducted using the time-series of observed streamflow and groundwater levels. Moreover, we force the transient model using groundwater recharge in two scenarios: (1) spatially variable recharge based on the mHM simulations, and (2) spatially homogeneous groundwater recharge. The modeling result in first scenario has a slightly higher correlation with groundwater head time-series, which further validates the plausibility of spatial groundwater recharge distribution calculated by mHM in the mesocale. The statistical analysis of model predictions shows a promising prediction ability of the model. The offline coupling method implemented here can reproduce reasonable groundwater head time series while keep a desired level of detail in the subsurface model structure with little surplus in computational cost. Our exemplary calculations show that the coupled model mHM#OGS can be a valuable tool to assess the effects of variability in land surface heterogeneity, meteorological, topographical forces and geological zonation on the groundwater flow dynamics.


2006 ◽  
Vol 10 (3) ◽  
pp. 353-368 ◽  
Author(s):  
J. Parajka ◽  
V. Naeimi ◽  
G. Blöschl ◽  
W. Wagner ◽  
R. Merz ◽  
...  

Abstract. This paper examines the potential of scatterometer data from ERS satellites for improving hydrological simulations in both gauged and ungauged catchments. We compare the soil moisture dynamics simulated by a semidistributed hydrologic model in 320 Austrian catchments with the soil moisture dynamics inferred from the satellite data. The most apparent differences occur in the Alpine areas. Assimilating the scatterometer data into the hydrologic model during the calibration phase improves the relationship between the two soil moisture estimates without any significant decrease in runoff model efficiency. For the case of ungauged catchments, assimilating scatterometer data does not improve the daily runoff simulations but does provide more consistent soil moisture estimates. If the main interest is in obtaining estimates of catchment soil moisture, reconciling the two sources of soil moisture information seems to be of value because of the different error structures.


2014 ◽  
Vol 11 (5) ◽  
pp. 5217-5250 ◽  
Author(s):  
I. E. M. de Graaf ◽  
E. H. Sutanudjaja ◽  
L. P. H. van Beek ◽  
M. F. P. Bierkens

Abstract. Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolution. In this study we present a global scale groundwater model (run at 6' as dynamic steady state) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The aquifer schematization and properties were based on available global datasets of lithology and transmissivities combined with estimated aquifer thickness of an upper unconfined aquifer. The model is forced with outputs from the land-surface model PCR-GLOBWB, specifically with net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed variation in saturated conductivity causes most of the groundwater level variations. Simulated groundwater heads were validated against reported piezometer observations. The validation showed that groundwater depths are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional scale groundwater patterns and flowpaths confirm the relevance of taking lateral groundwater flow into account in GHMs. Flowpaths show inter-basin groundwater flow that can be a significant part of a basins water budget and helps to sustain river baseflow, explicitly during times of droughts. Also important aquifer systems are recharged by inter-basin groundwater flows that positively affect water availability.


2012 ◽  
Vol 9 (1) ◽  
pp. 1163-1205 ◽  
Author(s):  
W. Tian ◽  
X. Li ◽  
X.-S. Wang ◽  
B. X. Hu

Abstract. The water and energy cycles interact, making them generally closely related. Land surface models (LSMs) can describe the water and energy cycles of the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs) well describe the dynamic movement of subsurface water flow, but they cannot depict the physical mechanism of the evapotranspiration (ET) process in detail. In this study, a coupled model of groundwater with simple biosphere (GWSiB) is developed based on the full coupling of a typical land surface model (SiB2) and a three-dimensional variably saturated groundwater model (AquiferFlow). In this model, the infiltration, ET and energy transfer are simulated by SiB2 via the soil moisture results given by the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. The developed model is then applied to study water cycle processes in the middle reaches of the Heihe River Basin in the northwest of China. The model is validated through data collected at three stations in the study area. The stations are located in a shallow groundwater depth zone, a deeper groundwater depth zone and an agricultural irrigation area. The study results show that the coupled model can well depict the land surface and groundwater interaction and can more comprehensively and accurately simulate the water and energy cycles compared with uncoupled models.


2005 ◽  
Vol 2 (6) ◽  
pp. 2739-2786 ◽  
Author(s):  
J. Parajka ◽  
V. Naeimi ◽  
G. Blöschl ◽  
W. Wagner ◽  
R. Merz ◽  
...  

Abstract. This paper examines the potential of scatterometer data from ERS satellites for improving hydrological simulations in both gauged and ungauged catchments. We compare the soil moisture dynamics simulated by a semidistributed hydrologic model in 320 Austrian catchments with the soil moisture dynamics inferred from the satellite data. The most apparent differences occur in the Alpine areas. Assimilating the scatterometer data into the hydrologic model during the calibration phase improves the relationship between the two soil moisture estimates without any significant decrease in runoff model efficiency. For the case of ungauged catchments, assimilating scatterometer data does not improve the daily runoff simulations but does provide more consistent soil moisture estimates. If the main interest is in obtaining estimates of catchment soil moisture, reconciling the two sources of soil moisture information seems to be of value because of the different error structures.


2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Padam Jee Omar ◽  
Shishir Gaur ◽  
P. K. S. Dikshit

AbstractEffective management of water resource is essential in arid and semi-arid areas of India. In Bihar, for drinking purpose humans, livestock is dependent on the groundwater as well as in agricultural areas groundwater plays an important role in irrigation directly or indirectly. There is rise in the groundwater demand due to rapid population increase and fast industrialization. To meet this groundwater demand, excessive withdrawal of groundwater is a point of concern due to limited storage of it. Assessment of the groundwater was done by preparing a numerical model of the groundwater flow. This model is capable of solving large groundwater problems and associated complexity with it. In this study, a transient multi-layered groundwater flow model was conceptualized and developed for the Koshi River basin. In north Bihar plains, the Koshi River is one of the biggest tributaries of the Ganga River system. Koshi originates from the lower part of Tibet and joins the Ganga River in Katihar district, Bihar, India. After model development, calibration of the model was also done, by considering three model parameters, to represent the actual field conditions. For validation of the model, fifteen observation wells have been selected in the area. With the help of observation well data, computed and observed heads were compared. Comparison results have been found to be encouraging and the computed groundwater head matched with the observed water head to a realistic level of accuracy. Developed groundwater model is used to predict the groundwater head and flow budget in the concerned area. The study revealed that groundwater modeling is an important method for knowing the behavior of aquifer systems and to detect groundwater head under different varying hydrological stresses. This type of study will be beneficial for the hydrologist and water resource engineers to predict the groundwater flow behavior, before implementing any project or to implement a correction scheme.


2019 ◽  
Vol 23 (8) ◽  
pp. 3481-3502 ◽  
Author(s):  
Wei Mao ◽  
Yan Zhu ◽  
Heng Dai ◽  
Ming Ye ◽  
Jinzhong Yang ◽  
...  

Abstract. For computationally efficient modeling of unsaturated–saturated flow in regional scales, the quasi-three-dimensional (3-D) scheme that considers one-dimensional (1-D) soil water flow and 3-D groundwater flow is an alternative method. However, it is still practically challenging for regional-scale problems due to the highly nonlinear and intensive input data needed for soil water modeling and the reliability of the coupling scheme. This study developed a new quasi-3-D model coupled to the UBMOD 1-D soil water balance model with the MODFLOW 3-D hydrodynamic model. A new implementation method of the iterative scheme was developed in which the vertical net recharge and unsaturated zone depth were used as the exchange information. A modeling framework was developed to organize the coupling scheme of the soil water model and the groundwater model and to handle the pre- and post-processing information. The strength and weakness of the coupled model were evaluated by using two published studies. The comparison results show that the coupled model is satisfactory in terms of computational accuracy and mass balance error. The influences of spatial and temporal discretization as well as the stress period on the model accuracy were discussed. Additionally, the coupled model was used to evaluate groundwater recharge in a real-world study. The measured groundwater table and soil water content were used to calibrate the model parameters, and the groundwater recharge data from a 2-year tracer experiment were used to evaluate the recharge estimation. The field application further shows the practicability of the model. The developed model and the modeling framework provide a convenient and flexible tool for evaluating unsaturated–saturated flow systems at the regional scale.


2015 ◽  
Vol 19 (2) ◽  
pp. 823-837 ◽  
Author(s):  
I. E. M. de Graaf ◽  
E. H. Sutanudjaja ◽  
L. P. H. van Beek ◽  
M. F. P. Bierkens

Abstract. Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.


2012 ◽  
Vol 9 (9) ◽  
pp. 10917-10962 ◽  
Author(s):  
W. Tian ◽  
X. Li ◽  
G.-D. Cheng ◽  
X.-S. Wang ◽  
B. X. Hu

Abstract. Water and energy cycles interact, making these two processes closely related. Land surface models (LSMs) can describe the water and energy cycles on the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs) describe the dynamic movement of the subsurface water well, but they cannot depict the physical mechanisms of the evapotranspiration (ET) process in detail. In this study, a coupled model of groundwater flow with a simple biosphere (GWSiB) is developed based on the full coupling of a typical land surface model (SiB2) and a three-dimensional variably saturated groundwater model (AquiferFlow). In this coupled model, the infiltration, ET and energy transfer are simulated by SiB2 using the soil moisture results from the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. After the coupled model is built, a sensitivity test is first performed, and the effect of the groundwater depth and the hydraulic conductivity parameters on the ET are analyzed. The coupled model is then validated using measurements from two stations located in shallow and deep groundwater depth zones. Finally, the coupled model is applied to data from the middle reaches of the Heihe River basin in the northwest of China to test the regional simulation capabilities of the model.


2016 ◽  
Author(s):  
Inge E. M. de Graaf ◽  
Rens L. P. H. van Beek ◽  
Tom Gleeson ◽  
Nils Moosdorf ◽  
Oliver Schmitz ◽  
...  

Abstract. Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts as well as evaporation in areas with shallow water tables. Lateral flows between basins can be a significant part of the basins water budget, but most global-scale hydrological models do not consider surface water-groundwater interactions and do not include a lateral groundwater flow component. In this study we simulate groundwater head fluctuation and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5 arc-minutes) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6 % to 20 % of the total aquifer area) changes timing and amplitude of head fluctuations, as well as flow paths and groundwater-surface water interactions rates. Also, timing and magnitude of groundwater head fluctuations are better estimated when confining layers are included. Groundwater flow paths within confining layers are shorter then paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths are simulated crossing catchment boundaries, thereby supporting water budgets of neighboring catchments or aquifer systems. The two-layer transient groundwater model is used to identify hotspots of groundwater depletion resulting in an estimated global groundwater depletion of 6700 km3 over the 1960–2010, consistent with estimates of previous studies.


Sign in / Sign up

Export Citation Format

Share Document