scholarly journals Vorticity-Divergence semi-Lagrangian Global Atmospheric Model SL-AV20: Dynamical Core

2016 ◽  
Author(s):  
Mikhail Tolstykh ◽  
Vladimir Shashkin ◽  
Rostislav Fadeev ◽  
Gordey Goyman

Abstract. SL-AV (Semi-Lagranginan Absolute Vorticity) is a global atmospheric model. Its latest version SL-AV20 provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using reduced lat-lon grid and the variable resolution in latitude is tested with two idealized testcases. The results agree well with other published model solutions. It is shown that the use of the reduced grid having up to 25 % less grid points than the regular grid does not significantly affect the accuracy. Variable resolution in latitude allows to improve the accuracy of solution in the region of interest.

2017 ◽  
Vol 10 (5) ◽  
pp. 1961-1983 ◽  
Author(s):  
Mikhail Tolstykh ◽  
Vladimir Shashkin ◽  
Rostislav Fadeev ◽  
Gordey Goyman

Abstract. SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude–longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat–lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.


2016 ◽  
Vol 31 (5) ◽  
pp. 1547-1572 ◽  
Author(s):  
Silvio N. Figueroa ◽  
José P. Bonatti ◽  
Paulo Y. Kubota ◽  
Georg A. Grell ◽  
Hugh Morrison ◽  
...  

Abstract This article describes the main features of the Brazilian Global Atmospheric Model (BAM), analyses of its performance for tropical rainfall forecasting, and its sensitivity to convective scheme and horizontal resolution. BAM is the new global atmospheric model of the Center for Weather Forecasting and Climate Research [Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)], which includes a new dynamical core and state-of-the-art parameterization schemes. BAM’s dynamical core incorporates a monotonic two-time-level semi-Lagrangian scheme, which is carried out completely on the model grid for the tridimensional transport of moisture, microphysical prognostic variables, and tracers. The performance of the quantitative precipitation forecasts (QPFs) from two convective schemes, the Grell–Dévényi (GD) scheme and its modified version (GDM), and two different horizontal resolutions are evaluated against the daily TRMM Multisatellite Precipitation Analysis over different tropical regions. Three main results are 1) the QPF skill was improved substantially with GDM in comparison to GD; 2) the increase in the horizontal resolution without any ad hoc tuning improves the variance of precipitation over continents with complex orography, such as Africa and South America, whereas over oceans there are no significant differences; and 3) the systematic errors (dry or wet biases) remain virtually unchanged for 5-day forecasts. Despite improvements in the tropical precipitation forecasts, especially over southeastern Brazil, dry biases over the Amazon and La Plata remain in BAM. Improving the precipitation forecasts over these regions remains a challenge for the future development of the model to be used not only for numerical weather prediction over South America but also for global climate simulations.


2020 ◽  
Author(s):  
Ha-Rim Kim ◽  
Baek-Min Kim ◽  
Sang-Yoon Jun ◽  
Yong-Sang Choi

<p>This study investigates the prediction skill of the sub-seasonal prediction model that can depend on the choice of dynamical cores: the finite volume (FV) dynamical core on a latitude-longitude grid system versus spectral element (SE) dynamical core on a cubed-sphere grid system. Recent researches showed that the SE dynamical core on a uniform grid system increases parallel scalability and removes the need for polar filters mitigating uncertainty in climate prediction, particularly for the Arctic region. However, it remains unclear whether the choice of dynamical cores can actually yield significant skill changes or not. To tackle this issue, we implemented a sub-seasonal prediction model based on the Community Atmospheric Model version 5 (CAM5) by incorporating the above two dynamical cores with virtually the same physics schemes. Sub-seasonal prediction skills of the SE dynamical core and FV dynamical core are verified with ERA-interim reanalysis during the early winter (November – December) and the late winter (January – February) from 2001/2002 to 2017/2018. The prediction skills of the two different dynamical cores were significantly different regardless of the virtually same physics schemes. In the ocean, the predictability of the SE dynamical core is similar to the FV dynamical core, mostly because of our simulation configuration imposing the same boundary and initial conditions at the surface. Notable differences in the one-month predictability between the two cores are found for the wintertime Arctic and mid-latitudes, particularly over North America and Eurasia continents. With the one-month lead, SE dynamical core exhibited higher predictability over North America in late winter, whereas the FV dynamical core showed relatively higher predictability in East Asia and Eurasia in early winter. One of the reasons for these differences may be the different manifestations of Arctic-midlatitudes linkage in the two dynamical cores; the SE dynamical core captures warmer Arctic and colder mid-latitudes relatively well than the FV dynamical core. Therefore, we conclude that the careful choice of dynamical cores of sub-seasonal prediction models is needed.</p>


2008 ◽  
Vol 65 (1) ◽  
pp. 263-275 ◽  
Author(s):  
Richard Kleeman

Abstract The nature of statistical predictability is analyzed in a T42 global atmospheric model that is able to adequately capture the main features of the midlatitude atmosphere. Key novel features of the present study include very large prediction ensembles and information theoretic techniques. It is found globally that predictability declines in a quasi-linear fashion with time for short-term predictions (3–25 days), while for long ranges (30–45 days) there is an exponential tail. In general, beyond 45 days the prediction and climatological ensembles have essentially converged, which means that beyond that point, atmospheric initial conditions are irrelevant to atmospheric statistical prediction. Regional predictions show considerable variation in behavior. Both of the (northern) winter storm-track regions show a close-to-quasi-linear decline in predictability toward a cutoff at around 40 days. The (southern) summer storm track shows a much more exponential and considerably slower decline with a small amount of predictability still in evidence even at 90 days. Because the winter storm tracks dominate global variance the behavior of their predictability tends to dominate the global measure, except at longer lags. Variability in predictability with respect to initial conditions is also examined, and it is found that this is related more strongly to ensemble signal rather than ensemble spread. This result may serve to explain why the relation between weather forecast skill and ensemble spread is often observed to be significantly less than perfect. Results herein suggest that the ensemble signal as well as spread variations may be a major contributor to skill variations. Finally, it is found that the sensitivity of the calculated global predictability to changes in model horizontal resolution is not large; results from a T85 resolution model are not qualitatively all that different from the T42 case.


2014 ◽  
Vol 11 (3) ◽  
pp. 1613-1642 ◽  
Author(s):  
J.-F. Legeais ◽  
M. Ablain ◽  
S. Thao

Abstract. The assessment of long-term errors in altimeter sea level measurements is essential for studies related to the mean sea level (MSL) evolution. One of the main contributors to the long-term sea level uncertainties is the correction of the altimeter range from the wet troposphere path delay, which is provided by onboard microwave radiometers for the main altimeter missions. The wet troposphere correction (WTC) derived from the operational European Centre for Medium-Range Weather Forecast (ECMWF) atmospheric model is usually used as a reference for comparison with the radiometer WTC. However, due to several improvements of the processing, this model is not homogenous over the altimetry period (from 1993 onwards), preventing the detection of errors in the radiometer WTC, especially in the first altimetry decade. In this study, we determine the quality of WTC provided by the operational ECMWF atmospheric model in comparison with the fields derived from the ERA Interim (ECMWF) and the National Centers for Environmental Predictions/National Center for Atmospheric Research (NCEP/NCAR) reanalyses. Separating our analyses on several temporal and spatial scales, we demonstrate that ERA Interim provides the best modeled WTC for the altimeter sea level at climate scales. This allows us to better evaluate the radiometer WTC errors, especially for the first altimetry decade (1993–2002), and thus to improve the altimeter MSL error budget. This work also demonstrates the relevance of the feed-backs that the "altimetry" and "atmosphere" communities can bring to each other.


2020 ◽  
Author(s):  
Florentin Lemonnier ◽  
Alizée Chemison ◽  
Hubert Gallée ◽  
Gerhard Krinner ◽  
Jean-Baptiste Madeleine ◽  
...  

Abstract. In the current context of climate change in the poles, one of the objectives of the APRES3 (Antarctic Precipitation Remote Sensing from Surface and Space) project is to characterize the vertical structure of precipitation in order to better simulate it. Nowadays, the precipitation simulated by models in Antarctica is very widespread and overestimated the data. Sensitivity studies have been conducted using two models and compared to the observations obtained at the Dumont d'Urville coast station, obtained by a Micro Rain Radar (MRR). The MAR meso-scale model specifically developed for the polar regions and the LMDz/IPSL general circulation model, with zoomed configuration over Dumont d'Urville, have been considered for this study. These models being different in resolution and physical configuration, performing an inter-comparison required numerical, dynamic and physical adjustments in LMDz. A sensitivity study was conducted on the physical and numerical parameters of the LMDz model and on the resolution of the MAR with the aim of estimating their contribution to the precipitation simulation. Sensitivity tests with MAR revealed that this model is well adjusted for precipitation modeling in polar climates, this confirming that this model is a reference in polar climate modeling. Regarding LMDz, sensitivity experiments revealed that modifications in the sedimentation and sublimation parameters do not significantly impact precipitation rate. However, dissipation of the LMDz model, which is a numerical process that dissipates spatially excessive energy and keeps the model stable, impacts precipitation indirectly but very strongly. A suitable adjustment of the dissipation reduces significantly precipitation over Antarctic peripheral area, thus providing a simulated profile in better agreement with the MRR observations.


2017 ◽  
Vol 14 ◽  
pp. 247-251 ◽  
Author(s):  
Dragan Latinović ◽  
Sin Chan Chou ◽  
Miodrag Rančić

Abstract. Global Eta Framework (GEF) is a global atmospheric model developed in general curvilinear coordinates and capable of running on arbitrary rectangular quasi-uniform spherical grids, using stepwise (Eta) representation of the terrain. In this study, the model is run on a cubed-sphere grid topology, in a version with uniform Jacobians (UJ), which provides equal-area grid cells, and a smooth transition of coordinate lines across the edges of the cubed-sphere. Within a project at the Brazilian Center for Weather Forecasts and Climate Studies (CPTEC), a nonhydrostatic version of this model is under development and will be applied for seasonal prediction studies. This note describes preliminary tests with the GEF on the UJ cubed-sphere in which model performance is evaluated in seasonal simulations at a horizontal resolution of approximately 25 km, running in the hydrostatic mode. Comparison of these simulations with the ERA-Interim reanalyses shows that the 850 hPa temperature is underestimated, while precipitation pattern is mostly underestimated in tropical continental regions and overestimated in tropical oceanic regions. Nevertheless, the model is still able to well capture the main seasonal climate characteristics. These results will be used as a control run in further tests with the nonhydrostatic version of the model.


2019 ◽  
Vol 11 (3) ◽  
pp. 256 ◽  
Author(s):  
Ivette Banos ◽  
Luiz Sapucci ◽  
Lidia Cucurull ◽  
Carlos Bastarz ◽  
Bruna Silveira

The Global Positioning System (GPS) Radio Occultation (RO) technique allows valuable information to be obtained about the state of the atmosphere through vertical profiles obtained at various processing levels. From the point of view of data assimilation, there is a consensus that less processed data are preferable because of their lowest addition of uncertainties in the process. In the GPSRO context, bending angle data are better to assimilate than refractivity or atmospheric profiles; however, these data have not been properly explored by data assimilation at the CPTEC (acronym in Portuguese for Center for Weather Forecast and Climate Studies). In this study, the benefits and possible deficiencies of the CPTEC modeling system for this data source are investigated. Three numerical experiments were conducted, assimilating bending angles and refractivity profiles in the Gridpoint Statistical Interpolation (GSI) system coupled with the Brazilian Global Atmospheric Model (BAM). The results highlighted the need for further studies to explore the representation of meteorological systems at the higher levels of the BAM model. Nevertheless, more benefits were achieved using bending angle data compared with the results obtained assimilating refractivity profiles. The highest gain was in the data usage exploring 73.4% of the potential of the RO technique when bending angles are assimilated. Additionally, gains of 3.5% and 2.5% were found in the root mean square error values in the zonal and meridional wind components and geopotencial height at 250 hPa, respectively.


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 893-905 ◽  
Author(s):  
J.-F. Legeais ◽  
M. Ablain ◽  
S. Thao

Abstract. The assessment of long-term errors in altimeter sea level measurements is essential for studies related to the mean sea level (MSL) evolution. One of the main contributors to the long-term sea level uncertainties is the correction of the altimeter range from the wet troposphere path delay, which is provided by onboard microwave radiometers for the main altimeter missions. The wet troposphere correction (WTC) derived from the operational European Centre for Medium-Range Weather Forecast (ECMWF) atmospheric model is usually used as a reference for comparison with the radiometer WTC. However, due to several improvements in the processing, this model is not homogenous over the altimetry period (from 1993 onwards), preventing the detection of errors in the radiometer WTC, especially in the first altimetry decade. In this study, we determine the quality of WTC provided by the operational ECMWF atmospheric model in comparison with the fields derived from the ERA-Interim (ECMWF) and the National Centers for Environmental Predictions/National Center for Atmospheric Research (NCEP/NCAR) reanalyses. Separating our analyses on several temporal and spatial scales, we demonstrate that ERA-Interim provides the best modeled WTC for the altimeter sea level at climate scales. This allows us to better evaluate the radiometer WTC errors, especially for the first altimetry decade (1993–2002), and thus to improve the altimeter MSL error budget. This work also demonstrates the relevance of the interactions between the "altimetry" and "atmosphere" communities, since the expertise of each is of benefit to the other.


Sign in / Sign up

Export Citation Format

Share Document